đ゙’ doubtnut

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

PHYSICAL WORLD, UNITS AND MEASUREMENTS

Jee Main 5 Years At A Glance

1. The percentage errors in quantities P, Q, R and S are 0.5%,
$1 \%, 3 \%$ and 1.5% respectively in the measurement of a
physical quantity $A=\frac{P^{3} Q^{2}}{\sqrt{R} S}$.
The maximum percentage error in the value of A will be :
A. 8.5%
B. 6.0%
C. 7.5%
D. 6.5%

Answer: D

- Watch Video Solution

2. The characteristic distance at which quantum gravitational effect are significant the planck length can be determined form a suitable combination of the fundamental physical constant $G \mathrm{~h}$ and c which of the followng correctly gives the planck length ?
A. $G^{2} h c$
B. $\left(\frac{G h}{c^{3}}\right)^{\frac{1}{2}}$
C. $G^{\frac{1}{2}} h^{2} c$
D. $G h^{2} c^{3}$

Answer: B

- Watch Video Solution

3. The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively 1.5% and 1%, the maximum error in determining the density is:
A. 2.5%
B. 3.5%
C. 4.5%
D. 6%

Answer: C

- Watch Video Solution

4. Time (T), velocity (3) and angular momentum (h) are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be

$$
\text { A. }[M]=\left[T^{-1} C^{-2} h\right]
$$

B. $[M]=\left[T^{-1} C^{2} h\right]$
C. $[M]=\left[T^{-1} C^{-2} h^{-1}\right]$
D. $[M]=\left[T C^{-2} h\right]$

Answer: A

- Watch Video Solution

5. The following observations were taken for dtermining the
surface tension of water by capillary tube method: diameter of capillary , $D=1.25 \times 10^{-2} m$ and rise of water in capillary,$h=1.45 \times 10^{-2} m$. Taking $g=9.80 \mathrm{~ms}^{-2}$ and using the relation $T=(r g h / 2) \times 10^{3} \mathrm{Nm}^{-1}$, what is the possible error in measurement of surface tension T ?
(a) 2.4%
(b) 15%
(c) 1.6%
(d) 0.15\%
A. 2.4%
B. 10%
C. 0.15%
D. 1.5%

Answer: D

- Watch Video Solution

6. In the following ' I ' refers to current and other symbols have their usual meaning. Chosse the option that corresponds to the dimensions of electrical conductivity:
A. $M^{-1} L^{-3} T^{3} I$
B. $M^{-1} L^{-3} T^{3} I^{2}$
C. $M^{-1} L^{3} T^{3} I$
D. $M L^{-3} T^{-3} I^{2}$

Answer: B

- Watch Video Solution

7. A student measures the time period of 100 ocillations of a simple pendulum four times. The data set is $90 s, 91 \mathrm{~s}, 95 \mathrm{~s}$, and 92
. Ifthe min $i \mu m \div i$ sion \in themeasur \in gclockis 1
then the reported men time should be:
A. $92 \pm 1.8 s$
B. $92 \pm 3 s$
C. $92 \pm 2 s$
D. $92 \pm 5.0 s$

Answer: C

(Watch Video Solution

8. If electronic charge e, electron mass m, speed of light in
vaccum c and Plank's constant h are taken as fundamental
quantities, the permeability of vacuum μ_{0} can be expressed in units of :
A. $\left(\frac{h}{m e^{2}}\right)$
B. $\left(\frac{h c}{m e^{2}}\right)$
C. $\left(\frac{h}{c e^{2}}\right)$
D. $\left(\frac{m c^{2}}{h e^{2}}\right)$

Answer: C

- Watch Video Solution

9. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{\frac{L}{g}}$. Meaured value of L is 20.0 cm know to 1 mm accuracy and time for 100 oscillation of the pendulum is found to be $90 s$ using a wrist watch of $1 s$ resolution. The accracy in the determinetion of g is :
A. 1%
B. 5%
C. 2%

Answer: D

- Watch Video Solution

10. The currect voltage relation of diode is given by $1=\left(e^{1000 V / T}-1\right) m A$, where the applied voltage V is in volt and the temperature T is in degree Kelvin. If a student makes an error measuring $\pm 0.01 V$ while measuring the current of $5 m A$ at $300 K$, what will be error in the value of current in mA?
A. 0.05 mA
B. 0.2 mA
C. 0.02 mA
D. 0.5 mA

Answer: B

(D) Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Units Of Physical Quantities

1. ऊष्मीय चालकता की इकाई है
A. $\mathrm{Jm}^{-2} \sec ^{-1}\left({ }^{\circ} C\right)^{-1}$
B. $\mathrm{Jm}^{-1} \mathrm{sec}^{-1}\left({ }^{\circ} C\right)^{-2}$
C. J-sec

$$
\text { D. } \mathrm{Jm}^{-1} \sec ^{-1}\left({ }^{\circ} C\right)^{-1}
$$

Answer: D

- Watch Video Solution

2. The SI unit of electric polarization is
A. $C m^{-2}$
B. coulomb
C. ampere
D. volt

Answer: A
3. What is the unit of magnetic permeability μ_{0} of vacuum?
A. $\mathrm{Wb} \mathrm{A}^{-1} m^{-1}$
B. $W b^{-1} A m$
C. $W b A m^{-1}$
D. $W b A^{-1}$,

Answer: A

(D) Watch Video Solution
4. The S.I. unit of latent heat is
A. $J k g^{-1}$
B. Jmol^{-1}
C. $N k g^{-1}$
D. $\mathrm{N} \mathrm{mol}^{-1}$

Answer: A

D View Text Solution

5. The unit of self inductance of a coil is
A. henry
B. volt
C. farad
D. weber

Answer: A

(D) Watch Video Solution

6. The surface tension of a liquid is 70 dyne $/ \mathrm{cm}$. In MKS system its value is
A. $70 \mathrm{~N} / \mathrm{m}$
B. $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $7 \times 10^{2} N / m$
D. $7 \times 10^{3} \mathrm{~N} / \mathrm{m}$

Answer: B
7. Joule-second is the unit of
A. energy
B. torque
C. power
D. angular momentum

Answer: D

- Watch Video Solution

8. The SI unit of Stefan's constant is :
A. $W / m^{2} K^{4}$
B. W / m^{2}
C. $W / m^{2} K$
D. $W / m^{2} K^{2}$

Answer: A

- Watch Video Solution

9. S.I. unit of universal gas constant is
A. $J K^{-1} \mathrm{~mol}^{-1}$
B. Joule
C. $J K^{-1}$
D. $\mathrm{J} \mathrm{mol}^{-1}$

- Watch Video Solution

10. Young's modulus of steel is $1.9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ When expressed is CGS units of $d y n e s / \mathrm{cm}^{2}$ it will be equal to $\left(1 N=10^{5} d y \mathrm{ne}, 1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}\right)$
A. 1.9×10^{10}
B. 1.9×10^{11}
C. 1.9×10^{12}
D. 1.9×10^{13}

Answer: C

- Watch Video Solution

11. Which one of the following pairs of quantities and their units is a proper match?
A. Impulse $-\mathrm{N} / \mathrm{sec}$
B. Magnetic flux-weber
C. Power-farad
D. Capacitance-henry

Answer: B

(Watch Video Solution

12. The numerical value of Young's modulus in S.I. unit is β. what is its numerical value in CGS system?
A. β
B. 10β
C. $\beta / 10$
D. 100β

Answer: B

- Watch Video Solution

13. If the units of length and force are increased by four times the unit of energy will be incresed by
A. is increased by 4 times
B. is increased by 16 times
C. is increased by 8 times
D. remains unchanged

Answer: B

- Watch Video Solution

14. the density of a material is $8 \mathrm{~g} / \mathrm{cc}$. In a system in which units of length is 5 cm and of mass is 20 g , the density of material is :
A. 8
B. 20
C. 50
D. 80

- Watch Video Solution

15. If e is the charge, V the potential difference, T the temperature, then the units of $\frac{e V}{T}$ are the same as that of
A. Planck's constant
B. Stefan's constant
C. Boltzmann's constant
D. gravitational constant

Answer: C

16. In equation, $r=m^{2} \sin \pi t$, where t represent time if the unit of m is N, then the unit of r is
A. N
B. N^{2}
C. $N s$
D. $N^{2} s$

Answer: B

(Watch Video Solution

17. If $x=a t+b t^{2}$, where x is the distance travelled by the body in kilometres while t is the time in seconds, then the units of b are
A. $k m / s$
B. $k m s$
C. $k m / s^{2}$
D. $k m s^{2}$

Answer: C

- Watch Video Solution

18. Which of the following quantities has not been expressed in proper unit?
A. torque : newton metre
B. stress : newton metre ${ }^{-2}$
C. modulus of elasticity : newton metre ${ }^{-2}$
D. surface tension : newton metre ${ }^{-2}$

Answer: D

- Watch Video Solution

19. In the eqn. $\left(p+\frac{a}{V^{2}}\right)(V-b)=$ constant constant, the unit of a is
A. dyne $\times \mathrm{cm}^{5}$
B. dyne $\times \mathrm{cm}^{4}$
C. dyne/ cm^{3}
D. dyne $\times \mathrm{cm}^{2}$
20. In CGS system the magnitude of the force is 100 dyne.In another system where the fundamental physical quantities
are kilogram, metre and minutc, the magnitude of the force is
A. 0.036
B. 0.36
C. 3.6
D. 36

Answer: C

Exercise 1 Concept Builder Topicwise Topic 2 Errors In

 Measurements And Significant Figures1. In an experiment four quantities a, b, c and d are measure
with percentage error $1 \%, 2 \%, 3 \%$,and 4% respectively
quantity is P is calculate as follow
$P=\frac{a^{3} b^{2}}{c d} \%$ error in P is
A. 10%
B. 7%
C. 4%
D. 14%

Answer: D

2. A body of mass $m=3.513 \mathrm{~kg}$ is moving along the x -axis with a speed of $5.00 \mathrm{~ms}^{-1}$. The magnetude of its momentum is recorded as
A. $17.6 \mathrm{~kg} \mathrm{~ms}^{-1}$
B. $17.565 \mathrm{~kg} \mathrm{~ms}^{-1}$
C. $17.56 \mathrm{~kg} \mathrm{~ms}^{-1}$
D. $17.57 \mathrm{kms}^{-1}$

Answer: C

3. What is the fractional error in g calculated from
$T=2 \pi \sqrt{\frac{l}{g}}$? Given that fractional error in T and l are $\pm x$ and $\pm y$ respectively.
A. $x+y$
B. $x-y$
C. $2 x+y$
D. $2 x-y$

Answer: C
4. The dimensions of a rectangular block measured with vernier callipers having least count of 0.01 cm are $5 \mathrm{~mm} \times$
$10 \mathrm{~mm} \times 5 \mathrm{~mm}$. What is the maximum percentage error in the measurement of the volume of the block?
A. 5%
B. 10%
C. 15%
D. 20%

Answer: A

- Watch Video Solution

5. A vernier callipers has its main scale 10 cm equally divided into 250 parts its vernier scale is of 50 division and coincide with 15 mm of the main scale the least count of the instrument is
A. 0.01 cm
B. 0.02 cm
C. 0.001 cm
D. 0.002 cm

Answer: A
6. The length of one rod $l_{1}=3.323 \mathrm{~cm}$ and the other is $l_{2}=3.321 \mathrm{~cm}$ both rods were measured with one measuring instrument with least count 0.001 cm Then $\left(l_{1}-l_{2}\right)$ is
A. $(0,002 \pm 0.001) \mathrm{cm}$
B. $(0.002 \pm 0.000) \mathrm{cm}$
C. $(0.002 \pm 0.002) \mathrm{cm}$
D. None of these

Answer: C

7. The relative density of material of a body is found by weighting it first in air and then in water. If the weight in air is $(5.00 \pm 0.05) N$ and the weight in water is $(4.00 \pm 0.05) N$. Find the relative density along with the maximum permissible percentage error.
A. $(5.00 \pm 0.05) N$
B. $(5.00 \pm 11 \%)$
C. (5.00 ± 0.10)
D. $(5.00 \pm 6 \%)$

Answer: B
8. A physical quantity X is represented by $X=\left(M^{x} L^{-y} T^{-z}\right.$. The maximum percantage errors in the measurement of M, L, and T, respectively , are $a \%, b \%$ and $c \%$. The maximum percentage error in the measurement of X will be
A. $(a x+b y-c z) \%$
B. $(a x-b y-c z) \%$
C. $(a x+b y+c z) \%$
D. $(a x-b y+c z) \%$

Answer: C

9. Percentage error in the measurement of mass and speed are 2% and 3% respectively. The error in the measurement of kinetic energy obtained by measuring mass and speed will be
A. 12%
B. 10%
C. 8%
D. 2%

Answer: C

10. The least count of a stop watch is $(1 / 5) s$. The time 20 oscillations of a pendulum is measured to be 25 s . The maximum percentage error in this measurement is
A. 8%
B. 1%
C. 0.8%
D. 16%

Answer: C

- Watch Video Solution

11. The internal and external diameters of a hollow cylinder are measured with the help of a Vernier callipers. Their
values are $4.23 \pm 0.01 \mathrm{~cm}$ and $3.87 \pm 0.01 \mathrm{~cm}$, respectively.
The thickness of the wall of the cylinder is
A. $0.36 \pm 0.02 \mathrm{~cm}$
B. $0.18 \pm 0.02 \mathrm{~cm}$
C. $0.36 \pm 0.01 \mathrm{~cm}$
D. $0.18 \pm 0.01 \mathrm{~cm}$

Answer: B

- Watch Video Solution

12. The diameter of a sphere is measured with the instrument having least count 0.001 cm . The diameter is 1.933 cm . The radius to be correct significant figures will be
A. 0.965 cm
B. 0.966 cm
C. 0.967 cm
D. None of these

Answer: B

- Watch Video Solution

13. In a vernier callipers, ten smallest divisions of the vernier scale are equal to nine smallest division on the main scale.

If the smallest division on the main scale is half millimeter, then the vernier constant is
A. 0.5 mm
B. 0.1 mm
C. 0.05 mm
D. 0.005 mm

Answer: C

(Watch Video Solution

14. A physical quantity is given by $X=M^{a} L^{b} T^{c}$. The percentage error in measurement of M, L and T are α, β and γ respectively. Then maximum percentage error in the quantity X is
A. $a \alpha+b \beta+c \gamma$
B. $a \alpha+b \beta-c \gamma$
C. $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{2}{\gamma}$
D. None of these

Answer: A

- Watch Video Solution

15. In a simple pendulum experiment for the determination of acceleration due to gravity time period is measured with an accuracy of 0.1% while length was measured with an accuracy of 0.3%. the percentage accuracy in the value of g so obtained is
A. 0.8%
B. 0.7%
C. 0.5%
D. 0.6%

Answer: C

- Watch Video Solution

16. The relative error in the dertmination of the surface area of a sphere is α. Then the relative error in the determination of its volume is :
A. $\frac{2}{3} \alpha$
B. $\frac{2}{3} \alpha$
C. $\frac{3}{2} \alpha$
D. α

- Watch Video Solution

17. The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively, the maximum error in the measurement of density will be
A. 7%
B. 9%
C. 12%
D. 13%

- Watch Video Solution

18. A student measured the diameter of a wire using a screw gauge with least count 0.001 cm and listed the measurements. The correct measurement is
A. 5.3200 cm
B. 5.3 cm
C. 5.32 cm
D. 5.320 cm

Answer: D
19. In a vernier callipers, N divisions of vernier scale coincide with ($\mathrm{N}-1$) divisions of main scale (in which 1 division represents 1 mm). The least count of the instrument in cm should be
A. N
B. $N-I$
C. $1 / 10 N$
D. $1 / N-1$

Answer: C

20. A screw gauge has 200 equal divisions marked along the circumference of the disc and one full rotation of the disc advances on the main scale by 0.05 cm . The least count of screw gauge is
A. $2.5 \times 10^{-4} \mathrm{~cm}$
B. $2.5 \times 10^{-3} \mathrm{~cm}$
C. $6.25 \times 10^{-4} \mathrm{~cm}$
D. $6.25 \times 10^{-3} \mathrm{~cm}$

Answer: A
21. The refractive index of water measured by the relation $m=\frac{\text { real depth }}{\text { apparent depth }}$ is found to have values of $1.34,1.38$, 1.32 and 1.36 , the mean value of refractive index with percentage error is
A. $1.36 \pm 1.48 \%$
B. $1.35 \pm 0 \%$
C. $1.36 \pm 6 \%$
D. $1.36 \pm 0 \%$

Answer: A

D Watch Video Solution
22. N divisions on the main scale of a vernier callipers coincide with $(N+1)$ divisions of the vernier scale if each division of the main scale is 'a' units, then the least count of the instrument is
A. a
B. $\frac{a}{N}$
C. $\frac{N}{N+1} \times a$
D. $\frac{a}{N+1}$

Answer: D

- View Text Solution

23. A wire has a mass $(0.3 \pm 0.003) \mathrm{g}$, radius (0.5 ± 0.005) mm and length $(6 \pm 0.06) \mathrm{cm}$. The maximum percentage error in the measurement of its density is
A. 1
B. 2
C. 3
D. 4

Answer: D

Watch Video Solution

24. In a experiment the angle are required to be measured using an instrument. 26 divisions of the main scale exactly
coincide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half -a-degree $\left(=0.5^{\circ}\right)$ then the least count of the instrument is .
A. half minute
B. one degree
C. half degree
D. one minute

Answer: D

- Watch Video Solution

25. The pressure on a square plate is measured by measuring the force on the plate and the length of the
sides of the plate by using the formula $p=\frac{F}{l^{2}}$. If the maximum errors in the measurment of force and length are 4% and 2% respectively. Then the maximum error in the measurment of pressure is
A. 1%
B. 2%
C. 8%
D. 10%

Answer: C
26. A screw gauge gives the following reading when used to measure the diameter of a wire. Main scale reading $=0 \mathrm{~mm}$, circular scale reading $=52$ divisions. Given that 1 mm on main scale corresponds to 100 divisions of the circular scale. The diameter of the wire from the above data is
A. 0.052 cm
B. 0.026 cm
C. 0.05 cm
D. 0.52 cm

Answer: A
27. A thin copper wire of length l metre increases in length by 2% when heated through $10^{\circ} \mathrm{C}$. What is the percentage increase in area when a square copper sheet of length l metre is heated through $10^{\circ} \mathrm{C}$
A. 4%
B. 8%
C. 16%
D. 12%

Answer: A
28. Intensity obseverd in an interferecne pattern is $I=I_{0} \sin ^{2} \theta$. At $\theta=30^{\circ}$, Intensity $I=5 \pm 0.002$. The pecentage error in angle is
A. $\frac{4}{\pi} \sqrt{3} \times 10^{-2} \%$
B. $\frac{2}{\pi} \sqrt{3} \times 10^{-2} \%$
C. $\frac{1}{\pi} \sqrt{3} \times 10^{-2} \%$
D. $\frac{3}{\pi} \sqrt{3} \times 10^{-2} \%$

Answer: A

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 3 Dimensions Of Physical Quantities

1. Dimensions of ohm are same as that of (where h is Planck's constant and e is charge)
A. $\frac{h}{e}$
B. $\frac{h^{2}}{e}$
C. $\frac{h}{e^{2}}$
D. $\frac{h^{2}}{e^{2}}$

Answer: C

- Watch Video Solution

2. The solar constant is defined as the energy incident per
unit area per second. The dimensional formula for solar constant is
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{0} T^{-3}\right]$

Answer: D

- Watch Video Solution

3. Which physical quantities have the same dimension?
A. Moment of couple and work
B. Force and power
C. Latent heat and specific heat
D. Work and power

Answer: A

- Watch Video Solution

4. The dimensions of physical quantity X in the equation

Force $=\frac{X}{\text { Density }}$ is given by
A. $\left[M L^{4} T^{-2}\right]$
B. $\left[M^{2} L^{-2} T^{-1}\right]$
C. $\left[M^{2} L^{-2} T^{-2}\right]$
D. $\left[M L^{-2} T^{-1}\right]$
5. Which of the following units denotes the dimension $M L^{2}$ $\frac{M L}{Q^{2}}$, where Q denotes the electric charge?
A. $W b / m^{2}$
B. Henry (H)
C. H / m^{2}
D. Weber (Wb)

Answer: B

D Watch Video Solution
6. Which of the following has the same dimensions?
A. Impulse and momentum
B. Specific heat and latent heat
C. Moment of inerita and force
D. Thrust and surface tension

Answer: A

(Watch Video Solution

7. The dimensions of voltage in terms of mass (M), length (L)
and time (T) and ampere (A) are
A. $\left[M L^{2} T^{-2} A^{-2}\right]$
B. $\left[M L^{2} T^{3} A^{-1}\right]$
C. $\left[M L^{2} T^{-3} A^{1}\right]$
D. $\left[M L^{2} T^{-3} A^{-1}\right]$

Answer: D

- Watch Video Solution

8. If L denotes the inductance of an inductor through which a current i is flowing, the dimensions of $L i^{2}$ are
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M^{2} L^{2} T^{-2}\right]$
D. Not expressible in M, L, T
9. Whether a given relation / formula is correct or not can be checked on the basis of the principle of homogeneity of dimensions. According to this principle, only that formula is correct, in which the dimensions of the various terms on one side of the relation are equal to the respective dimensions of these terms on the other side of the relation.

With the help of the compreshension given above, choose the most appropriate alternative for each of the following questions:

The distance travelledl by a body in nth second is given by $S_{n t h}=u+\frac{a}{2}(2 n-1)$ where u is initial velocity and a is acceleration. The dimensions of $S_{n t h}$ are
A. $\left[M^{1} L^{0} T^{1}\right]$
B. $\left[M^{0} L^{1} T^{0}\right]$
C. $\left[M^{0} L^{1} T^{-1}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: C

D Watch Video Solution

10. If $p=\frac{R T}{V-b} e^{-\alpha V / R T}$, then dimensional formula of α is same as that of
A. V
B. P
C. T
D. R

(Watch Video Solution

11. Time (T), velocity (3) and angular momentum (h) are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be
A. $[M]=\left[C^{-1} h\right]$
B. $[M]=\left[T^{-1} C^{2} h\right]$
C. $[M]=\left[T^{-1} C^{-2} h^{-1}\right]$
D. $[M]=\left[C^{-2} h\right]$
12. suppose the kinetic energy of a body oscillating with amplitude A and at a distance x is given by
$K=\frac{B x}{x^{2}+A^{2}}$
The dimension of B are the same as that of
A. work/time
B. work \times distance
C. work/distance
D. work \times time

Answer: B
13. The dimensions of universal gas constant is
A. $\left[L^{2} M^{1} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right]$
B. $\left[L^{1} M^{2} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right]$
C. $\left[L^{1} M^{1} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right]$
D. $\left[L^{2} M^{2} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right]$

Answer: A

D Watch Video Solution

14. The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b, c are respectively :-
A. $\left[L T^{-2}\right],[L],[T]$
B. $\left[L^{2}\right],[T]$ and $\left[L T^{2}\right]$
C. $\left[L T^{2}\right],[L T]$ and $[L]$
D. $[L],[L T]$ and $\left[T^{2}\right]$

Answer: A

- Watch Video Solution

15. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of
capacitance and magnetic induction respectively. When are the dimensions of Y in MLTQ system ?
A. $\left[M^{-3} L^{-2} T^{-2} Q^{-4}\right]$
B. $\left[M L^{-2}\right]$
C. $\left[M^{-3} L^{-2} Q^{4} T^{8}\right]$
D. $\left[M^{-3} L^{-2} Q^{4} T^{4}\right]$

Answer: D

- Watch Video Solution

16. The frequency f of vibrations of a mass m suspended from a spring of spring constant k is given by $f=C m^{x} k^{y}$, where C is a dimensionnless constant. The values of x and y are, respectively,
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=-\frac{1}{2}, y=-\frac{1}{2}$
C. $x=\frac{1}{2}, y=-\frac{1}{2}$
D. $x=-\frac{1}{2}, y=\frac{1}{2}$

Answer: D

- Watch Video Solution

17. If the dimensions of a physical quantity are given by $M^{a} L^{b} T^{c}$, then the physical quantity will be :
A. velocity if $a-1, b-0, c-1$
B. accelerationn if $a=1, b=1, c=-2$
C. force if $a=0, b=-1, c=-2$
D. pressure if $a=1, b=-2, c=-2$
18. If the time period t of the oscillation of a drop of liquid of density d, radius r, vibrating under surface tension s is given by the formula $t=\sqrt{t^{2 b} s^{c} d^{a / 2}}$. It is observed that the time period is directly proportional to $\sqrt{\frac{d}{s}}$. The value of b should therefore be:
A. $\frac{3}{4}$
B. $\sqrt{3}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: C

19. Given as : $h=\frac{2 S \cos \theta}{r \rho g}$ where S is the surface tension of liquid, r is the radius of capillary tube. ρ is the density and g is acceleration due to gravity then dimensional formula for S is:
A. $\left[M L^{0} T^{-2}\right]$
B. $\left[M^{0} L T^{-2}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{-3}\right]$

Answer: A
20. The volume V of water passing and any point of a uniform tube during t seconds is related to the crosssectional area A of the tube and velocity u of water by the relation $V \propto A^{\alpha} u^{\beta} t^{\gamma}$

Which one of the following will be true?
A. $\alpha=\beta=\gamma$
B. $\alpha \neq \beta=\gamma$
C. $\alpha=\beta \neq \gamma$
D. $\alpha \neq \beta \neq \gamma$

Answer: B
21. Given that in $(\alpha / p \beta)=\alpha z / K_{B} \theta$ where p is pressure, z is distance, K_{B} is Boltzmann constant and θ is temperature, the dimension of β are (useful formula Energy $=K_{B} \times$ temperature)
(A)
$L^{0} M^{0} T^{0}$
(B) $L^{1} M^{-1} T^{2}$
(C) $L^{2} M^{0} T^{0}$
(D) $L^{-1} M^{1} T^{-2}$
A. $\left[L^{0} M^{0} T^{0}\right]$
B. $\left[L^{1} M^{-1} T^{2}\right]$
C. $\left[L^{2} M^{0} T^{0}\right]$
D. $\left[L^{-1} M^{1} T^{-2}\right]$

Answer: C
22. The position x of a particle at time t is given by $x=\frac{V_{0}}{a}\left(1-e^{-a t}\right)$, where V_{0} is constant and $a>0$. The dimensions of V_{0} and a are
A. $M^{-0} L T^{-1}$ and T^{-1}
B. $M^{0} L T^{0}$ and T^{-1}
C. $M^{0} L T^{-1}$ and $L T^{-2}$
D. $M^{0} L T^{-1}$ and T

Answer: A

D Watch Video Solution

Exercise 2 Concept Applicator

1. A metal sample carrying a current along x axis with density is subjected to a magnetic field B_{z} (along z-axis). The electric field E_{y} developed along Y -axis is directly proportional to J_{x} as well as B_{z}. The constant of proportionality has SI unit.
A. $\frac{m^{2}}{A}$
B. $\frac{m^{3}}{A s}$
C. $\frac{m^{2}}{A s}$
D. $\frac{A s}{m^{3}}$

Answer: B

2. In an experiment of calibartion of voltmeter, a standard cell of emf 1.1 V is balanced against 440 cm of potentiometer wire. The potentilal difference across the ends of a resistance is found to balance against 220 cm of the wire. The corresponding reading of voltmeter is 0.5 volt.

Find the error in the reading of voltmeter.
A. -0.15 volts
B. 0.15 volts
C. 0.5 volts
D. -0.05 volts

Answer: D
3. The velocity of water wave v may depend on their wavelength λ, the density of water ρ and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as
A. v
B. $v^{2} \propto g \lambda$
C. $v^{2} \propto g \lambda^{2}$
D. $v^{2} \propto g^{-1} \lambda^{2}$

Answer: B
4. If E, M, L and G denote energy, mass, angular momentum and gravitational constant repectively then the quantity $\left(E^{2} L^{2} / M^{5} G^{2}\right)$ has the dimensions of :-
A. newton
B. metre
C. kilogram
D. unitless

Answer: D

- Watch Video Solution

5. The potential energy of a point particle is given by the
expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless
combination of the constant α, β and γ is-
A. $\frac{\alpha}{\beta \gamma}$
B. $\frac{\alpha^{2}}{\beta \alpha}$
C. $\frac{\gamma}{\alpha \beta}$
D. $\frac{\alpha \gamma}{\beta}$

Answer: D

- Watch Video Solution

6. A physical parameter a can be determined by measuring the parameters b, c, d, and e using the relation $a=b^{\alpha} c^{\beta} / d^{\gamma} e^{\delta}$. If the maximum errors in the measurement of b, c, d, and $e a r e b_{1} \%, c_{1} \%, d_{1} \%$, and $e_{1} \%$, then
the maximum error in the value of a determined by the experminent.
A. $\left(b_{1}+c_{1}+e_{1}\right) \%$
B. $\left(b_{1}+c_{1}-d_{1}-e_{1}\right) \%$
C. $\left(\alpha b_{1}+\beta c_{1}-\gamma d_{1}-\delta e_{1}\right) \%$
D. $\left(\alpha b_{1}+\beta c_{1}+\gamma d_{1}+\delta e_{1}\right) \%$

Answer: D

- Watch Video Solution

7. The mass of the liquid flowing per second per unit area of cross-section of the tube is proportional to (pressure difference across the ends) ${ }^{\wedge}(\mathrm{n})$ and (average velocity of the
liquid $)^{\wedge}(m)$. Which of the following relations between m and n is correct?
A. $m=n$
B. $m=-n$
C. $m^{2}=n$
D. $m=-n^{2}$

Answer: B

- Watch Video Solution

8. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where ϵ_{0} is the permittivity of the free space, L is a length, ΔV is a
potential difference and Δt is a time interval. The dimensinal formula for X is the same as that of
A. resistance
B. charge
C. voltage
D. current

Answer: D

- Watch Video Solution

9. In a certain system of units, 1 unit of time is $5 \mathrm{sec}, 1$ unit of mass is 20 kg and 1 uint of length is 10 m . In this system, one unit of power will correspond to :-
A. 16 watt
B. $\frac{1}{16}$ watt
C. 25 watt
D. $\frac{1}{25}$ watt

Answer: B

- Watch Video Solution

10. The frequency (f) of a wire oscillating with a the length I, in p loops, under a tension T is given by $f=\frac{p}{2 l} \sqrt{\frac{T}{\mu}}$ where
$\mu=$ linear density of the wire, if the error made in determining length, tension and linear density be
$1 \%,-2 \%$ and 4% then the find the percentage error in the calculated frequency.
A. -4%
B. -2%
C. -1%
D. -5%

Answer: A

- Watch Video Solution

11. The electric field is given by $\vec{E}=\frac{A}{x^{3}} \hat{i}+B y \hat{j}+C z^{2} \hat{k}$. The SI units of A, B and C are respectively:

$$
\text { A. } \frac{N-m^{3}}{C}, V / m^{2}, N / m^{2}-C
$$

B. $V-m^{2}, V / m, N / m^{2}-C$
C. $V / m^{2}, V / m, N-C / m^{2}$
D. $V / m, N-m^{3} / C, N-C / m$

Answer: A

(Watch Video Solution

12. A formula is given as $P=\frac{b}{a} \sqrt{1+\frac{k \cdot \theta \cdot t^{3}}{m \cdot a}}$ where $\mathrm{P}=$ pressure, $\mathrm{k}=$ Boltzmann's constant,
$\theta=$ temperature, $\mathrm{t}=$ time, 'a' and 'b' are constants.
Dimensional formula of ' b ' is same as
A. Force
B. Linear momentum
C. Angular momentum
D. Torque

Answer: B

- Watch Video Solution

13. A physical quantity ρ is calculated by using the formula $\rho=\frac{1}{10} \frac{x y^{2}}{z^{1 / 3}}$, where x, y and z are experimentally measured quantities. If the fractional error in the measurement of x, y and z are $2 \%, 1 \%$ and 3%, respectively, then the maximum fractional error in the calculation of ρ is

$$
\text { A. } 0.5 \%
$$

B. 5%
C. 6%
D. 7%

Answer: B

(Watch Video Solution

14. The momentum of an electron in an orbit is h / λ, where h is a constant and λ is wavelength associated with it. The nuclear magneton of electron of charge e and mass m_{e} is given as $\mu_{n}=\frac{e h}{3672 \pi m_{e}}$. The dimension of μ_{n} are ($A \rightarrow$ current)
A. $\left[M L^{2} A\right]$
B. $\left[M L^{3} A\right]$
C. $\left[L^{2} A\right]$
D. $\left[M L^{2}\right]$

Answer: C

- Watch Video Solution

15. A gas bubble from an explosion under water oscillates with a period T proportional to $P^{a} d^{b} E^{c}$, where P is the pressure, d is density of water and E is the total energy of the explosion. Find the value of a, b and c^{\prime}.
A. $-5 / 6,1 / 2$ and $1 / 3$
B. $5 / 6,1 / 3$ and $-1 / 2$
C. $5 / 6,1 / 3$ and $1 / 2$
D. None of these

Answer: A

- Watch Video Solution

16. A student performs an experiment to determine the Young's modulus of a wire, exactly $2 m$ long, by Searle's method. In a partcular reading, the student measures the extension in the length of the wire to be 0.8 mmwithanuncerta $\int y o f+-\quad 0.05 m m a t a l o a d o f e x a c t l y$ 1.0kg
, thestudentalsomeasuresthediameterofthewire \rightarrow be

04mmwithanuncerta $\int y o f+-0.01 \mathrm{~mm}$. Takeg $=9.8 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)^{\wedge}$ (exact). the Young's modulus obtained from the reading is
A. $(2.0 \pm 0.3) \times 10^{11} N / m^{2}$
B. $(2.0 \pm 0.2) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
C. $(2.0 \pm 0.1) \times 10^{11} N / m^{2}$
D. $(2.0 \pm 0.05) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Answer: B

- Watch Video Solution

17. An experiment is performed to obtain the value of acceleration due to gravity g by using a simple pendulum of length L. In this experiment time for 100 oscillations is
measured by using a watch of 1 second least count and the value is 90.0 seconds. The length L is measured by using a meter scale of least count 1 mm and the value is 20.0 cm . The error in the determination of g would be:
A. 1.7%
B. 2.7%
C. 4.4%
D. 2.27%

Answer: B

- Watch Video Solution

18. from the following combinations of physical constants
(expressed through their as usual symbols) the only combination, that would have the same value in different systems of units, is:
A. $\frac{c h}{2 \pi \varepsilon_{o}^{2}}$
B. $\frac{e^{2}}{2 \pi \varepsilon_{o} G m_{e}^{2}}$
C. $\frac{\mu_{o} \varepsilon_{o}}{c^{2}} \frac{G}{h e^{2}}$
D. $\left(2 \pi \frac{\sqrt{\mu_{o} \varepsilon_{o}}}{c e^{2}} \frac{h}{G}\right.$

Answer: B
19. A, B, C and D are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $A D=C 1 n(B D)$ holds true. Then which of the combination is not a meaningful quantity
A. $\frac{C}{B D}-\frac{A D^{2}}{C}$
B. $A^{2}-B^{2} C^{2}$
C. $\frac{A}{B}-C$
D. $\frac{(A-C)}{D}$

Answer: D
20. A famous relation in Physics relates moving mass m to the rest mass m_{0} of a particle in terms of its speed v and the sped of light c. (This relaiton first arose as a consequence of special theory of relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant c. He writes $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ Guess where to put the missing c ?
A. $m=\frac{c m_{0}}{\sqrt{1-v^{2}}}$
B. $m=\frac{m_{0}}{c \sqrt{1-v^{2}}}$
C. $m=\frac{m_{0}}{\sqrt{c^{2}-v^{2}}}$
D. $m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

Answer: D

21. Turpentine oil is flowing through a tube of length L and radius r. The pressure difference between the two ends of the tube is p, the viscosity of the coil is given by $\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v L}$, where v is the velocity of oil at a distance x from the axis of the tube. From this relation, the dimensions of viscosity η are
A. $\left[M L^{-1} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$
22. The moment of inertia of a body rotating about a given axis is $6.0 \mathrm{kgm}^{2}$ in SI system. What is the value of the moment of inetia in a system of units in which the unit of length is 5 cm and the unit of mass is 10 g ?
A. $2.4 \times 10^{3} \mathrm{~g} \mathrm{~cm}^{2}$
B. $2.4 \times 10^{5} \mathrm{~g} \mathrm{~cm}^{2}$
C. $6.0 \times 10^{3} \mathrm{~g} \mathrm{~cm}^{2}$
D. $6.0 \times 10^{5} \mathrm{~g} \mathrm{~cm}^{2}$

Answer: B
23. The length of a cylinder is measured with the help of a vernier callipers whose smallest division on the main scale is 0.5 mm and nine divisions of the main scale are equal to ten divisions of the vernier scale. It is observed that $78^{\text {th }}$ division of the main scale coincides with sixth division of the vernier callipers. Find the length of the cylinder.
A. 3.13 cm
B. 3.33 cm
C. 3.63 cm
D. 3.93 cm

Answer: C
24. A sperical body of mass m and radius r is allowed to fall in a medium of viscosity η. The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity (v) is called constant (τ). Dimensionally, τ can be represented by
A. $\frac{m r^{2}}{6 \pi \eta}$
B. $\sqrt{\left(\frac{6 \pi m r \eta}{g^{2}}\right)}$
C. $\frac{m}{6 \pi \eta r v}$
D. None of these

Answer: D
25. A length -scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number pr unit volume (n) of certain charged paticles, and the charge (q) carried by each of the particles. Which of the following expression for I is dimensionally correct?
A. $l=\sqrt{\left(\frac{n q^{2}}{\varepsilon k_{B} T}\right)}$
B. $l=\sqrt{\left(\frac{\varepsilon k_{B} T}{n q^{2}}\right)}$
C. $l=\sqrt{\left(\frac{q^{2}}{\varepsilon n^{2 / 3} k_{B} T}\right)}$
D. $l=\sqrt{\left(\frac{q}{\varepsilon n^{1 / 3} k_{B} T}\right)}$

Answer: B

26. A spectrometer gives the following reading when used to measure the angle of a prism.

Main scale reading : 58.5degree
Vernier scale reading : 09 divisions

Given that 1 division on main scale correspods to 0.5 degree. Total divisions on the vernier scale is 30 and match with 29 divisions of the main scale the angle of the prism from the above data:
A. 58.59 degree
B. 58.77 degree
C. 58.65 degree
D. 59 degree

Answer: C

D Watch Video Solution

27. The speed of light in vacuum, c, depends on two fundamental constants, the permeability of free space, μ_{0} and the permittivity of free space, ε_{0}. The speed of light is given by $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$. The units for μ_{0} are
A. $k g^{-1} m^{-1} C^{2}$
B. $k g m C^{-2}$
C. $k g m s^{-4} C^{-2}$
D. $k g^{-1} s^{-3} C^{-2}$

Answer: B
28. The length of the string of a simple pendulum is measured with a metre scale to be 90.0 cm . The radius of the bob plus thelength of the hook is calculated to be 2.13 cm using measurements with a slide callipers. What is the effective lengthof the pendulum? (The effective length is defined as the distance between the point of suspension and the centre of the bob.)
A. 87.87 cm
B. 92.1 cm
C. 91.2 cm
D. 90.2 cm

Answer: B

29. A highly rigid cubical block (A) of small mass (M) and slide (L) is fixed rigidly on to another cubical block (B) of the same dimesions and of low modulus of rigidity (eta) such that the lower face of (A) completely covers the upper face of (B). The lower face of (B) is rigidly held on a horizontal surface. (A) small force (F) is applied perpendicular to one of the sides faces of (A). After the force is withdrawn, block (A) executes small oscillations the time period of which is given by.
A. $2 \pi \sqrt{M \eta L}$
B. $2 \pi \sqrt{M \eta / L}$
C. $2 \pi \sqrt{M L / \eta}$
D. $2 \pi \sqrt{M / \eta L}$

(Watch Video Solution

30. Two full turns of the circular scale of a screw gauge cover a distance of 1 mm on its main scale. The total number of divisions on the circular scale is 50 . Further, it is found that the screw gauge has a zero error of -0.03 mm .

While main scale reading of 3 mm and the number of circular scale divisions in line with the main scale as 35 . the dimeter of the wire is
A. 3.32 mm
B. 3.73 mm
C. 3.67 mm

D. 3.38 mm

Answer: D

- Watch Video Solution

