© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

RAY OPTICS AND OPTICAL INSTRUMENTS

Jee Main 5 Years At A Glance

1. A plano convex lens becomes an optical system of 28 cm focal length when its plane
surface is silvered and illuminated from left to
right as shown in Fig-A. If the same lens is
instead silvered on the curved surface and
illuminated from other side as in Fig. B, it acts
like an optical system of focal length 10 cm .

The refractive index of the material of lens is:
A. 1.50
B. 1.55

C. 1.75

D. 1.51

Answer: B

D View Text Solution

2. A convergent doublet of separated lens correct for spherical aberration, are separated
by $2 m$ and has an equivalent focal lenth of
10 cm . Calculate the focal length of its
component lenses.
A. $18 \mathrm{~cm}, 20 \mathrm{~cm}$
B. $10 \mathrm{~cm}, 12 \mathrm{~cm}$
C. $12 \mathrm{~cm}, 14 \mathrm{~cm}$
D. $16 \mathrm{~cm}, 18 \mathrm{cn}$

Answer: A

D Watch Video Solution
3. A ray of light is incident at an angle of 60°
on one face of a prism of angle 30°. The ray
emerging out of the prism makes an angle of 30° with the incident ray. The emergent ray is
A. 30°
B. 90°
C. 0°
D. 45°

Answer: C
(Watch Video Solution
4. Let the refractive index of a denser medium
with respect to a rarer medium be n_{12} and its
critical angle be θ_{c}. At an angle of incidence A
when light is travelling from denser medium
to rarer medium, a part of the light is reflected
and the rest is refracted and the angle between reflected and refracted rays is 90°,

Angle A given by -

$$
\begin{aligned}
& \text { A. } \frac{1}{\tan ^{-1}\left(\sin \theta_{C}\right)} \\
& \text { B. } \frac{1}{\tan ^{-1}\left(\sin \theta_{C}\right)} \\
& \text { C. } \cos ^{-1}\left(\sin \theta_{C}\right)
\end{aligned}
$$

D. $\tan ^{-1}\left(\sin \theta_{C}\right)$

Answer: D

D Watch Video Solution

5. In an experiment a convex lens of focal
length 15 cm is placed coaxially on an optical
bench in front of a convex mirror at a distance
of 5 cm from it. It is found that an object and
its image coincide, if the object is placed at a
distance of 20 cm from the lens. The focal length of the convex mirror is:
A. 27.5 cm
B. 20.0 cm
C. 25.0 cm
D. 30.5 cm

Answer: A
(Watch Video Solution
6. To determine refractive index of glass slab
using a travelling microscope, minimum number of readings required are :
A. Two
B. Four
C. Three
D. Five

Answer: C

D Watch Video Solution
7. An observer looks at a distant tree of height

10 m with a telescope of magnifying power of
20. To the observer the tree appears
A. 20 times taller
B. 20 times nearer
C. 10 times taller
D. 10 times nearer

Answer: B

D Watch Video Solution
8. You are asked to design a shaving mirror assuming that a person keeps it 10 cm from
his face and views the magnified image of the
face at the closest comfortable distance of 25 cm . The radius of curvature of the mirror would then be:
A. 60 cm
B. -24 cm
C. -60 cm
D. 24 cm

Answer: C

D Watch Video Solution

9. A telescope has an objective lens of focal
length 150 cm and an eyepiece of focal length

5 cm . If a 50 m tall tower at a distance of 1 km
is observed through this telescope in normal
setting, the angle formed by the image of the tower is θ, then θ is close to :
A. 30°
B. 15°
C. 60°
D. 1°

Answer: C

D View Text Solution

10. A diver looking up through the water sees
the outside world contained in a circular horizon. The refractive index of water is $\frac{4}{3}$, and the diver's eyes are 15 cm below the

A. $15 \times 3 \times \sqrt{5} \mathrm{~cm}$

B. $15 \times 3 \sqrt{7} \mathrm{~cm}$
C. $\frac{15 \times \sqrt{7}}{3} \mathrm{~cm}$
D. $\frac{15 \times 3}{\sqrt{7}} \mathrm{~cm}$

Answer: D

- Watch Video Solution

11. If the focal length of objective and eye lens
are 1.2 cm and 3 cm respectively and the object
is put 1.25 cm away from the objective lens
and the final image is formed at infinity. The magnifying power of the microscope is
A. 200
B. 100
C. 400
D. 150

- Watch Video Solution

12. A thin convex lens made from crown glass $\left(\mu=\frac{3}{2}\right)$ has focal length f . When it is measured in two different liquids having refractive indices $\frac{4}{3}$ and $\frac{5}{3}$, it has the focal lengths f_{1} and f_{2} respectively. The correct relation between the focal lengths is ,
A. $f_{1}=f_{2}<f$
B. $f_{1}>f$ and f_{2} becomes negative
C. $f_{2}>f$ and f_{1} becomes negative
D. f_{1} and f_{2} both become negative

Answer: B

(D) Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Plane Mirror Spherical Mirror And Reflection Of Light

1. The light reflected by a plane mirrorr may
form a real image
A. if the rays incident on the mirror are
diverging
B. if the rays incident on the mirror are
converging
C. if the object is placed very close to the
mirror

D. under no circumstances

Answer: B

2. Two plane mirrors are inclined at 70°. A ray incident on one mirror at incidence angle θ after reflection falls on the second mirror and is reflected from there parallel to the first mirror, The value of θ is
A. 50°
B. 45°
C. 30°
D. 55°
3. A point source of light is placed in front of a plane mirror.
A. all the reflected rays meet at a point when produced backward
B. only the reflected rays close to the normal meet at a point when produced backward.
C. only the reflected rays making a small
angle with the mirror, meet at a point
when produced backward.
D. light of different colours make different images.

Answer: A

D Watch Video Solution

4. In image formation from spherical mirrors, only paraxial rays are considered because they
A. are easy to handle geometrically
B. contain most of the intensity of the incident light
C. form nearly a point image of a point
source
D. show minimum dispersion effect

Answer: C
5. Two mirrors are placed at right angle to each other. A man is standing between them
combining his hair. How many images he will see?
A. 2
B. 3
C. 1
D. zero

Answer: B

D Watch Video Solution

6. A concave mirror forms the image of an
object on a screen. If the lower half of the mirror is covered with an opaque card, the effect would be
A. image less bright.
B. lower half of the image disappear
C. upper half of the image disappear

D. image blurred.

Answer: A

- Watch Video Solution

7. A man 160 cm height stands in fromt of a
plane mirror. His eyes are at a height of 150
cm from the floor. Then the minimum length
of the plane mirror for him to see his full
length image is -
A. 85 cm
B. 170 cm
C. 80 cm
D. 340 cm

Answer: C

- Watch Video Solution

8. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror and parallel to the second is reflected
from the second mirror parallel to the first
mirror. Determine the angle between the two

mirrors:

A. 30°
B. 45°
C. 60°
D. 75°

Answer: C
(Watch Video Solution
9. When a plane mirror is placed horizontally
on level ground at a distance of 60 m from the
foot of a tower, the top of the tower and its image in the mirror subtend and angle of 90° at the eye. The height of the tower is
A. 30 m
B. 60 m
C. 90 m
D. 120 m

Answer: B
10. In a concave mirror, an object is placed at a distance d_{1} from the focus and the real image is formed aat a distance d_{2} from the focus.

Then the focal length of the mirror is :
A. $\sqrt{x_{1} x_{2}}$
B. $\frac{x_{1}-x_{2}}{2}$
C. $\frac{x_{1}+x_{2}}{2}$
D. $\sqrt{\frac{x_{1}}{x_{2}}}$

Answer: A

D Watch Video Solution

11. A ray of light is incident at 50° on the middle of one of the two mirrorrs arranged at an angle of 60° between them. The ray then touches the second mirrorr, get reflected back to the first mirrorr, making an angle of incidence of
A. 50°
B. 60°
C. 70°
D. 80°

Answer: C

D Watch Video Solution

12. Two plane mirrors are inclined to each other at a certain angle.A ray of light first incident on one of them at an inclination of
10° with the mirror retraces its path after five reflections.The angle between the mirrors is
A. 12°
B. 22°
C. 30°
D. 20°

Answer: D
(Watch Video Solution
13. An infinitely long rod lies along the axis of a concave mirror of focal length f. The near end of the rod is distance $u>f$ from the mirror. Its image will have length

$$
\begin{aligned}
& \text { A. } \frac{f^{2}}{u-f} \\
& \text { B. } \frac{u f}{u-f} \\
& \text { C. } \frac{f^{2}}{u+f} \\
& \text { D. } \frac{u f}{u+f}
\end{aligned}
$$

Answer: A

14. A ray parallel to principal axis is incident at 30° from normal on concave mirror having radius of curvature R. The point on principal axis where rays are focussed is Q such that $P Q$
A. $\frac{R}{2}$
B. $\frac{R}{\sqrt{3}}$
c. $\frac{2 \sqrt{R}-R}{\sqrt{2}}$
D. $R\left(1-\frac{1}{\sqrt{3}}\right)$

Answer: D

D View Text Solution

15. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car 2.8 m behind the first car is overtaking the first car at a relative speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of the image of the second car as seen in the mrror of the first one is:

$$
\text { A. } \frac{1}{15} m / s
$$

B. $10 \mathrm{~m} / \mathrm{s}$
C. $15 m / s$

$$
\text { D. } \frac{1}{10} \mathrm{~m} / \mathrm{s}
$$

Answer: A

D Watch Video Solution

16. Two mirrors, one concave and the other convex, are placed 60 cm apart with their reflecting surfaces facing each other. An object is placed 30 cm from the pole of either of
them on their axis. If the focal lengths of both
the mirrors are 15 cm , the position of the image formed by reflection, first at the convex and then at the concave mirror, is:
A. 19.09 cm from the pole of the concave mirror
B. 19.09 cm from the pole of the convex
mirror
C. 11.09 cm from the pole of the concave mirror

D. 11.09 cm from the pole of the convex

mirror

Answer: A

D Watch Video Solution

17. In Fig. find the total magnification after two
successive reflections first on M_{1} and on M_{2}.
A. +1
B. -2
C. +2
D. -1

Answer: C

D View Text Solution

18. A plane mirror is kept parallel to y-axis. A point object is approaching the mirror with velocity $\vec{u}=(10 \hat{i}+10 \hat{j}) m / s$.

image is equal to

A. $20 \sqrt{2} m / s$
B. $20 m / s$
C. $10 \sqrt{2} m / s$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: B

D View Text Solution
19. A point object is kept in front of a plane mirror. The plane mirror is doing SHM of ampliture 2 cm . The plane mirror moves along the x -axis which is normal to the mirror. The amplitude of the mirror is such that the object is always in front of the mirror. The amplitude of SHM of the image is
A. 0
B. 2 cm
C. 4 cm

D. 1 cm

Answer: C

D Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 2 Refraction Of Light At Plane Surface And Total Internal Refiection

1. When light is refracted into a medium
A. its wavelength and frequency both increase
B. its wavelength increases but frequency
remains unchanged
C. its wavelength decreases and frequency increases
D. its wavelength and frequency both
decrease

Answer: B

2. The ratio of thickness of plates of two transparent medium A and B is $6: 4$. If light takes equal time in passing through them, then refractive index of A with respect to B will be
A. 1.33
B. 1.75
C. 1.4
D. 1.5

Answer: D

D Watch Video Solution

3. The refractive indices of glass and water with respect to air $\frac{1}{2}$ and $\frac{1}{\sqrt{3}}$ respectively.

Then the refractive index of are glass with respect to water is
A. $\frac{1}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{2}{\sqrt{3}}$

D. 2

Answer: B

D View Text Solution

4. The wavelength of a monochromatic light in
vacuum is γ. It travels from vacuum to a medium of absolute refractive index μ. The ratio of wavelength of the incident and refracted wave is
A. $\mu^{2}: 1$
B. 1:1
C. $\mu: 1$
D. $1: \mu$

Answer: C

D View Text Solution

5. A glass slab of thickness 4 cm contains the same number of waves as 5 cm of water, when both are traversed by the same
monochromatic light. If the refractive index of
water is $4 / 3$, then refractive index of glass is
A. $5 / 3$
B. $5 / 4$
C. $16 / 15$
D. 1.5

Answer: A
(Watch Video Solution
6. A ray of light travelling in water is incident on its surface open to air. The angle of incidence is θ, which is less than the critical angle. Then there will be
A. only a reflected ray and no refracted ray
B. only a refracted ray and no reflected ray
C. a reflected ray and a refracted ray and
the angle between them would be less
than $180^{\circ}-2 \theta$
D. a reflected ray and a refracted ray and
the angle between them would be greater than $180^{\circ}-2 \theta$

Answer: C

D Watch Video Solution

7. A ray of light is Incident on a glass plate at 60°. The reflected and refracted rays are found to be mutually perpe:ndiwlar. The refractive index of the glass is
A. 0.866
B. 1.5
C. 1.732
D. 2

Answer: C

D Watch Video Solution

8. Total internal reflection can take only if

A. light goes from optically rarer medium
(smaller refractive index) to optically
denser medium
B. light goes from optically denser medium
to rarer medium
C. the refractive indices of the two media are close to different
D. the refractive indices of the two media
are widely different

- Watch Video Solution

9. Electromagnetic radiation of frequency n, wavelength λ, travelling with velocity v in air, enters a glass slab of refractive index μ. The frequency, wavelength and velocity of light in the glass slab will be respectively
A. $\frac{n}{\mu}, \frac{\lambda}{\mu}$ and $\frac{v}{\mu}$
B. $n, \frac{\lambda}{\mu}$ and $\frac{v}{\mu}$
C. $n, 2 \lambda$ and $\frac{v}{\mu}$
D. $\frac{2 n}{\mu}, \frac{\lambda}{\mu}$ and v

Answer: B

- Watch Video Solution

10. A ray of light travelling inside a rectangular glass block of refractive index $\sqrt{2}$ is incident on
the glass-air surface at an angle of incidence of 45°. The refractive index of air is one. Under these conditions the ray will
A. emerge into the air without any deviation
B. be reflected back into the glass
C. be absorbed
D. emerge into the air with an angle of refraction equal to 90°

Answer: D

D Watch Video Solution

11. A narrow beam of white light enters slab having parallel faces.
A. the light never splits in different colours
B. the emergent beam is white
C. the light inside the slab is split into
different colours

D. the light inside the slab is white

Answer: B

12. A ray is incident at an angle 60° on a sphere which is made of material having refractive index= $\sqrt{3}$ find angle by which the emergent ray is deviated
A. 30°
B. 15°
C. 45°
D. 60°

Answer: D

D View Text Solution

13. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is
A. $36 s \sqrt{5}$
B. $5 \sqrt{5}$
C. $36 \sqrt{7}$
D. $36 \sqrt{7}$

Answer: D

D Watch Video Solution

14. A ray of light passes from vaccum into a medium of refractive index n. If the angle of incidence is twice the angle of refraction, then the angle of incidence is
A. $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
B. $\sin ^{-1}(\mu)$
C. $\sin ^{-1}\left(\frac{m}{2}\right)$
D. $\cos ^{-1}\left(\frac{\mu}{2}\right)$

Answer: A

D Watch Video Solution

15. A small coin is resting on the bottom of a beaker filled with liquid. A ray of light from the coin travels upto the surface of the liquid and
moves along its surface. How fast is the light travelling in the liquid?
A. $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: D

D View Text Solution
16. Let the $x-z$ plane be the boundary between two transparent media. Medium 1 in $z \geq 0$ has
a refractive index of $\sqrt{2}$ and medium 2 with
$z<0$ has a refractive index of $\sqrt{3}$. A ray of
light in medium 1 given by the vector
$\vec{A}=6 \sqrt{3} \hat{i}+8 \sqrt{3} \hat{j}-10 \hat{k}$ is incident on the
plane of separation. The angle of refraction in medium 2 is:
A. 45°
B. 60°
C. 75°

D. 30°

Answer: A

D Watch Video Solution

17. A transparent solid cylindrical rod has a refractive index of $\frac{2}{\sqrt{3}}$. It is surrounded by air.

A light ray is incident at the mid-point of one end of the rod as shown in the figure.

The incident angle θ for which the light ray grazes along the wall of the rod is :

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(\sqrt{3} / 2) \\
& \text { B. } \sin ^{-1}\left(\frac{2}{\sqrt{3}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \text { D. } \sin ^{-1}(1 / 2)
\end{aligned}
$$

Answer: C

D View Text Solution

Exercise 1 Concept Builder Topicwise Topic 3 Refraction Of Light At Spherical Surface And Power Of Lens

1. A point object is placed at the centre of a
glass sphere of radius 6 cm and refractive index 1.5. The distance of virtual image from the surface is
A. ${ }^{2} \mathrm{~cm}$
B. 4 cm
C. 6 cm

D. 12 cm

Answer: C

D Watch Video Solution

2. A parallel beam of light is incident on the surface of a transparent hemisphere of radius
R and refractive index 2.0 as shown in figure.
The position of the image formed by refraction at the first surface is:
A. $R / 2$
B. R
C. 2R
D. 3 R

Answer: C

D View Text Solution

3. A lens made of glass whose index of refraction is 1.60 has a focal length of +20 cm
in air. Its focal length in water, whose refractive index is 1.33 , will be
A. three times longer than in air
B. two times longer than in air
C. same as in air

D. None of these

Answer: A

D Watch Video Solution

4. A convex lens is in contact with a concave lens. The magnitude of the ratio of their powers is $\frac{3}{2}$. Their equivalent focal length is 30 cm . What are their individual focal lengths?
A. $-15,10$
B. $-10,15$
C. 75,50
D. $-75,50$

Answer: A
5. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the les on the other side on its principal axis, the intensity of light
A. remains constant
B. continuously increases
C. continuously decreases
D. first increases then decreases

Answer: A

- Watch Video Solution

6. A converging beam of rays in incident on a diverging lens. Having passed through the
lens the rays intersect at a point 15 cm from
the lens. If the lens is removed, the point where the rays meet, move 5 cm closer to the mounting that holds the lens. Find the focal length of the lens.
A. -10 cm
B. 20 cm
C. -30 cm
D. 5 cm

Answer: C

D Watch Video Solution

7. A body is located on a wall. Its image of equal size is to be obtained on a parallel wall with the help of a convex leng. The lens is
placed at a distance d ahead of second wall,
then the required focal length will be:
A. only $\frac{d}{4}$
B. only $\frac{d}{2}$
C. more than $\frac{d}{4}$ but less than $\frac{d}{2}$
D. less than $\frac{d}{4}$

Answer: B

- Watch Video Solution

8. A luminous object is placed at a distance of

30 cm from the convex lens of focal length

20 cm . On the other side of the lens, at what distance from the lens a convex mirror of radius of curvature 10 cm be placed in order to
have an upright image of the object coincident with it ?
A. 12 cm
B. 30 cm
C. 50 cm

D. 60 m

Answer: C

D Watch Video Solution

9. A plano-convex lens fits exactly into a planoconcave lens. Their plane surfaces are parallel to each other. If the lenses are made of different material of refractive indices μ_{1} and μ_{2} and R is the radius of curvature of the
curved surface of the lenses, then focal length of the combination is
A. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
B. $\frac{R}{\left(\mu_{1}-\mu_{2}\right)}$
C. $\frac{2 R}{\left(\mu_{2}-\mu_{1}\right)}$
D. $\frac{R}{2\left(\mu_{1}+\mu_{2}\right)}$

Answer: B

D Watch Video Solution

10. A plano concave lens is placed on a paper on which a flower is drawn. How far above its actual position does the flower appear to be?
A. 10 cm
B. 15 cm
C. 50 cm
D. None of these

Answer: A
11. A drop of water is placed on a glass plate. A
double convex lens having radius of curvature
of each surface is 20 cm is placed on it. The
focal length of water is $\left.\left(\mu_{W}=4 / 3\right)\right)$
A. -20 cm
B. 60 cm
C. 20 cm
D. -60 cm

Answer: D

D View Text Solution

12. A point object O is placed in front of a glass
rod having spherical end of radius of
curvature 30 cm . The image would be form
A. 30 cm left
B. in finity
C. 1 cm of the right

D. 18 cm to the left

Answer: A

- View Text Solution

13. A spherical surface of radius of curvature R separates air (refractive index 1.0) from glass
(refractive index 1.5). The centre of curvature is in the glass. A point object P placed in air is
found to have a real image Q in the glass. The
line $P Q$ cuts the surface at a point O, and $P O=O Q$. The distance $P O$
A. $5 R$
B. 3 R
C. 2 R
D. 1.5 R

Answer: A
(Watch Video Solution
14. A convex lens of focal length 40 cm is held coaxially 12 cm above a mirror of focal length 18 cm . An object held xcm above the lens gives rise to an image coincident with it. Then x is equal to:
A. 12 cm
B. 15 cm
C. 18 cm
D. 30 cm

Answer: B

D View Text Solution

15. A point object is placed at a distance of 20
cm from a thin plano-convex lens of focal
length 15 cm . If the plane surface is silvered, the image will form at:
A. 60 cm left of $A B$
B. 30 cm left of $A B$

C. 12 cm left of $A B$

D. 60 cm right to $A B$

Answer: C

(D) View Text Solution

Exercise 1 Concept Builder Topicwise Topic 4 Prism And Dispersion Of Light

1. The angular dispersion produced by a prism
A. increases if the average refractive index
increases
B. increases if the average refractive index
decreases
C. remains constant whether the average
refractive index increases or decreases
D. has no relation with average refractive index.

Answer: A

2. A ray $P Q$ incident on the refracting face $B A$ is
refracted in the prism BAC as shown in the
figure and emerges from the other refracting
face $A C$ as $R S$ such that $A Q A R$. If the angle of prism $A=60^{\circ}$ and the refractive index of the material of prism is $\sqrt{3}$, then the angle of deviation of the ray is
A. 60°
B. 45°
C. 30°

D. None of these

Answer: A

D View Text Solution

3. A ray is inncident at an angle of incidence ii on one surface of a prism of small angle A and emerge normally from opposite surface. If the refractive index of the material of prism is μ.
the angel of incidance I is nearly equal to
A. $\frac{A}{\mu}$
B. $\frac{A}{2 \mu}$
C. μA
D. $\frac{\mu A}{2}$

Answer: C

- Watch Video Solution

4. Light of wavelenght $4000 A$ is incident at small angle on a prim of apex angle 4°. The prism has $n_{v}=1.5$ and $n_{r}=1.48$. The angle
of dispersion produced by the prism in this
light is:
A. 0.2°
B. 0.08°
C. 0.192°
D. None of these

Answer: D
(Watch Video Solution
5. A light ray is incident perpendicularly to one face of a 90° prism and is totally internally reflected at the glass-air interface. If the angle of reflection is 45°, we conclude that the refractive index n

$$
\begin{aligned}
& \text { A. } n>\frac{1}{\sqrt{2}} \\
& \text { B. } n>\sqrt{2} \\
& \text { C. } n<\frac{1}{\sqrt{2}} \\
& \text { D. } n<\sqrt{2}
\end{aligned}
$$

Answer: B

D View Text Solution

6. A thin prism P with angle 4° and made from
glass of refractive index 1.54 is combined with
another thin prism P made from glass of refractive index 1.72 to produce dispersion without deviation The angle of prism P is
A. 5.33°
B. 4°

C. 2.6°

$$
\text { D. } 3^{\circ}
$$

Answer: D

D Watch Video Solution

7. There is a prism with refractive index equal to $\sqrt{2}$ and the refracting angle equal to 60°. One of the refracting surfaces of the prism is polished. A beam of monochromatic light will
retrace its path if its angle of incidence over the refracting surface of the prism is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(\sqrt{2}) \\
& \text { B. } \sin ^{-1}(2 \sqrt{3}) \\
& \text { C. } \sin ^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Answer: C

D View Text Solution

8. A glass prism of refractive index 1.5 is immersed in water $\left(\mu=\frac{4}{3}\right)$. A light beam incident normally on the face $A B$ is totally reflected to reach the face $B C$ if
A. $\frac{2}{3}<\sin \theta<\frac{8}{9}$
B. $\sin \theta \leq \frac{2}{3}$
C. $\cos \theta \geq \frac{8}{9}$
D. $\sin \theta>\frac{8}{9}$
9. r and r denote the angles inside an equilateral prism, as usual, in degrees.

Consider that during some time interval from $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{t}, \mathrm{r}^{\prime}$ varies with time as $\mathrm{r}^{\prime}=10+t^{2}$.

During this timer will vary as (assume that r and r^{\prime} are in degree)
A. $50-t^{2}$
B. $50+t^{2}$
C. $60-t^{2}$
D. $60+t^{2}$

Answer: A

(D) View Text Solution

Exercise 1 Concept Builder Topicwise Topic 5 Optical Instruments

1. To increase the angular magnification of a
simple microscope, one should increase
A. the focal length of the lens
B. the power of the lens
C. the aperture of the lens
D. the object size

Answer: B

D Watch Video Solution

2. A normal eye is not able to see objects
closer than 25 cm because
A. the focal length of the eye is 25 cm
B. the distance of the retina from the eye-
lens is 25 cm
C. the eye is not able to decrease the
distance between the eye-lens and the retina beyond a limit

D. the eye is not able to decrease the focal

length beyond a limit

Answer: D

3. When the length of a microscope tube increases, its magnifying power
A. decreases
B. increases
C. does not change
D. may decreases or increase

Answer: B
4. The focal length of the objective and the eyepiece of a telescope are 50 cm and 5 cm respectively. If the telescope is focussed for distinct vision on a scale distant 2 m from its objective, then its magnifying power will be :
A. -4
B. -98
C. +8
D. -2

- View Text Solution

5. The focal lengths of objective lens and eye lens of a Galilean telescope are respectively 30 cm and 3.0 cm . telescope produces virtual, erect image of an object situated far away from it at least distance of distinct vision from the eye lens. In this condition, the magnifying power of the Galilean telescope should be:
A. +11.2
B. -11.2

C. -8.8

$$
\text { D. }+8.8
$$

Answer: D

(Watch Video Solution

Exercise 2 Concept Applicator

1. A bird in air looks at a fish vertically below it
and inside water. h_{1} is the height of the bird
above the surface of water and h_{2}, the depth
of the fish below the surface of water. If refractive index of water with respect to air be μ, then the distance of the fish as observed by the bird is
A. $h_{1}+h_{2}$
B. $h_{1}+\frac{h_{2}}{\mu}$
C. $\mu h_{1}+h_{2}$
D. $\mu h_{1}+\mu h_{2}$

Answer: B
2. A concave lens of glass, refractive index 1.5
has both surfaces of same radius of curvature
R. On immersion in a medium of refractive index 1.75 , it will behave as a
A. convergent lens of focal length 3.5 R
B. convergent lens of focal length 3.0 R
C. divergent lens of focal length 3.5 R
D. divergent lens of focal length 3.0 R

Watch Video Solution

3. The layered lens as shown is made of two
types of transparent materials - one indicated
by horizontal lines and the other by vertical
lines. The number of images formed of an object will be
A. 1
B. 2
C. 3
D. 6

Answer: B

D View Text Solution

4. In the displacement method a conves lens is
placed in between an object and a screen. If
the magnificaiton in the two position are m_{1} and $m_{-}(2)\left(m_{-}(1)>m_{2}\right)$, and the distance between the two positions of the lens is x, the focal length of the lens is
A. $\frac{x}{m_{1}+m_{2}}$
B. $\frac{x}{m_{1}-m_{2}}$
C. $\frac{x}{\left(m_{1}+m_{2}\right)^{2}}$
D. $\frac{x}{\left(m_{1}-m_{2}\right)^{2}}$

Answer: B

- Watch Video Solution

5. Light takes t_{1} second to travel a distance x cm in vacuum and the same light takes t_{2}
angle for the corresponding medium is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{10 t_{2}}{t_{1} x}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{t_{2} x}{10 t_{1}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{10 t_{1}}{t_{2} x}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{t_{1} x}{10 t_{2}}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. A thin lens focal length f_{1} and its aperture
has diameter d. It forms an image of intensity
I. Now the central part of the aperture up to diameter $\frac{d}{2}$ is blocked by an opaque paper.

The focal length and image intensity will change to
A. $\frac{f}{2}, \frac{1}{2}$
B. $f, \frac{1}{4}$
C. $\frac{3 f}{4}, \frac{I}{2}$
D. $f, \frac{3 I}{4}$

Answer: D

D Watch Video Solution

7. Two plane mirrors A and B are aligned parallel to each other, as shown in the figure. A
light ray is incident at an angle 30° at a point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one)

before it emerges out is

A. 28
B. 30
C. 32
D. 34

Answer: B

- View Text Solution

8. A ball is dropped from a height of 20 m above the surface of water in a lake. The refractive index of water is 4.3. A fish inside the lake, in the line of fall of the ball, is looking at the ball. At an instant, when the ball is 12.8 m above the water surface, the fish sees the speed of the ball as $\left[\right.$ Take $_{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. $]$
A. $9 m / s$
B. $12 m / s$
C. $16 \mathrm{~m} / \mathrm{s}$

D. $21.33 m / s$

Answer: C

D Watch Video Solution

9. The size of the image of an object, which is
at infinity, as formed by a convex lens of focal
length 30 cm is 2 cm . If a concave lens of focal length 20 cm is placed between the convex lens and the image at a distance of 26 cm from
the convex lens, calculate the new size of the image
A. $d / 2$
B. d
C. $2 d$
D. $3 d$

Answer: B
(Watch Video Solution
10. A parallel beam of light is incident from air at an angle α on the side PQ of a right angled triangular prism of refractive index $n=\sqrt{2}$. Light undergoes total internal reflection in the prism at the face PR when α has a minimum
value of 45°. The angle 0 of the prism is
A. 15°
B. 22.5°
C. 30°

D. 45°

Answer: A

D View Text Solution

11. The focal length of the objective and the eye piece of a compound microscope are 2.0 cm and 3.0 cm , respectively. The distance between the objective and the eye piece is 15.0 cm . The final image formed by the eye piece is at infinity. The two lenses are thin. The
distance in cm of the object and the image produced by the objective, measured from the objective lens, are respectively
A. 2.4 and 12.0
B. 2.4 and 15.0
C. 2.0 and 12.0
D. 2.0 and 3.0

Answer: A

D Watch Video Solution
12. A vessel of height 2 d is half-filled with a liquid of refractive index $\sqrt{2}$ and the other half with a liquid of refractive index n. (The given
liquids are immiscible). Then the apparent depth of the inner surface of the bottom of the vessel (neglecting the thickness of the bottom of the vessel) will be

$$
\begin{aligned}
& \text { A. } \frac{n}{d(n+\sqrt{2})} \\
& \text { B. } \frac{d(n+\sqrt{2})}{n \sqrt{2}} \\
& \text { C. } \frac{n \sqrt{2}}{d(n+\sqrt{2})}
\end{aligned}
$$

D. $\frac{n d}{d+\sqrt{2 n}}$

Answer: B

D Watch Video Solution

13. A printed page is pressed by a glass of water. The refractive index of the glass and water is 1.5 and 1.33 , respectively. If the thickness of the bottom of glass is 1 cm and depth of water is 5 cm , how much the page
will appear to be shifted if viewed from the

top?

A. 1.033 cm
B. 3.581 cm
C. 1.3533 cm
D. 1.90 cm

Answer: C
(Watch Video Solution
14. A convex lens, of focal length 30 cm , a concave lens of focal length 120 cm , and a plane mirror are arranged as shown. For an object kept at a distance of 60 cm from the convex lens, the final image, formed by the combination, is a real image, at a distance of:
A. 60 cm from the convex lens
B. 60 cm from the concave lens
C. 70 cm from the convex lens

D. 70 cm from the concave lens

Answer: A

D View Text Solution

15. An object is located in a fixed position in
front of a screen. Sharp image is obtained on
the screen for two positions of a thin lens separated by 10 cm . The size of the images in two situations are in the ratio $3: 2$. What is the distance between the screen and the object?
A. 124.5 cm
B. 144.5 cm
C. 65.0 cm
D. 99.0 cm

Answer: D

D Watch Video Solution

16. The image of an illuminated square object is obtained on a screen with the help of a converging lens. The distance of the square
from the lens is 30 cm . The area of the image
is 9 times of the square. What is the focal
length of the lens ?
A. 36 cm
B. 27 cm
C. 60 cm
D. 30 cm

Answer: D

D Watch Video Solution
17. An object is placed upright on the axis of a thin convex lens at a distance of four focal lengths (4f) from the center of the lens. An inverted image appears at a distance of $4 / 3 \mathrm{f}$ on the other side of the lens. What is the ratio of the height of the image of the height of the object?
A. $1 / 3$
B. $3 / 4$
C. $4 / 3$
D. $3 / 1$

Answer: A

D Watch Video Solution

18. A ray of light is travelling from glass to air.
(Refractive index of glass $=1.5$). The angle of incidence is 50°. The deviation of the ray is
A. 0°
B. 80°
C. $50^{\circ}-\sin ^{-1}\left[\frac{\sin 50^{\circ}}{1.5}\right]$
D. $\sin ^{-1}\left[\frac{\sin 506^{\circ}}{1.5}\right]-50^{\circ}$

Answer: B

D Watch Video Solution

19. We wish to make a microscope with the
help of two positive lenses both with a focal length of 20 mm each and the object is positioned 25 mm from the objective lens.

How far apart the lenses should be so that the
final image is formed at infinity?
A. 20 mm

B. 100 mm

C. 120 mm
D. 80 mm

Answer: C

- Watch Video Solution

20. A ray of light passes through an equilateral prism (refractive index 1.5) such that angle of incidence is equal to angle of emergence and
the latter is equal to $3 / 4 t h$ of the angle of prism. Calculate the angle of deviation.
A. 45°
B. 39°
C. 20°
D. 30°

Answer: D
(Watch Video Solution
21. An achromatic convergent system of focal
length +20 cm is made of two lenses (in contact) of materials having dispersive powers in the ratio $1: 2$. Their focal lengths must be respectively
A. $f_{1}=10 \mathrm{cms}, f_{2}=-20 \mathrm{cms}$
B. $f_{1}=20 \mathrm{cms}, f_{2}=10 \mathrm{cms}$
C. $f_{1}=-10 \mathrm{cms}, f_{2}=-20 \mathrm{cms}$
D. $f_{1}=20 \mathrm{cms}, f_{2}=-20 \mathrm{cms}$

Answer: A
22. The magnifying power of a telescope is 9 .

When it is adjusted for parallel rays the distance between the objective and eyepiece is 20 cm . The focal lengths of lenses are
A. $18 \mathrm{~cm}, 2 \mathrm{~cm}$
B. $11 \mathrm{~cm}, 9 \mathrm{~cm}$
C. $10 \mathrm{~cm}, 10 \mathrm{~cm}$
D. $15 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer: A

- Watch Video Solution

23. Consider the situation shown in fig. Water
$(\mu=4 / 3)$ is filled in a beaker upto a height of 10 cm . A plane mirror is fixed at a height of 5 cm from the surface of water. Distance of image from the mirror after reflection from it of an object O at the bottom of the beaker is
A. 15 cm
B. 12.5 cm
C. 7.5 cm
D. 10 cm

Answer: B

D View Text Solution

24. A plastic hemisphere has a radius of curvature of 8 cm and an index of refraction of
1.6. On the axis halfway between the plane
surface and the spherical one (4 cm from
each) is a small object O. The distance between
the two images when viewed along the axis
from the two sides of the hemisphere is approximately
A. 1.0 cm
B. 1.5 cm
C. 3.75 cm
D. 2.5 cm
25. A point object O is placed on the principal axis of a convex lens of focal length $f=20 \mathrm{~cm}$ at a distance of 40 cm to the left of it. The diameter of the lens is 10 . An eye is placed 60 cm to right of the lens and a distance h below the principal axis. The maximum value of h to see the image is
A. 0
B. 5 cm
C. 2.5 cm
D. 10 cm

Answer: C

D Watch Video Solution

26. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object is such a way that parallel rays comes out from the eye lens. If the object
subtends an angle 2° at the objective, the angular width of the image.
A. 10°
B. 24°
C. 50°
D. $(1 / 6)^{\circ}$

Answer: B
(Watch Video Solution

