© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - JEE ADVANCED PREVIOUS

YEAR

JEE ADVANCED 2021

Question

1. Match the following columns

The major product formed in the following reaction is

(A)
A.

(B)
B.

(C)
C.

(D)
D.

Answer:

2. Among the following conformation that corresponds to the most stable conformation of meso-butane-2,3-diol is
(A)
A.

(B)
B.

(C)
C.

(D)
D.

Answer:

- Watch Video Solution

3. For the given closed packed structure of a salt made of cation X and anion Y shown below(ions of only one face are shown for
clarity), the packing fraction is

A. 0.74
B. 0.63
C. 0.52
D. 0.48

Answer:

D Watch Video Solution

4. The calculated spin only magnetic moments
of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CuF}_{6}\right]^{3-}$ in BM
respectively are
A. 3.87 and 2.84
B. 4.90 and 1.73

C. 3.87 and 1.73

D. 4.90 and 2.84

Answer:

D Watch Video Solution

5. For the following reaction scheme, percentage yields are given along the arrows:
$\mathrm{Mg}_{2} \mathrm{C}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{(4.0 \mathrm{~g})}{\mathbf{P}} \xrightarrow[75 \%]{\substack{\mathrm{NaNH}_{2} \\ \mathrm{MeI}}} \mathbf{Q} \xrightarrow[40 \%]{\substack{\text { iron tube } \\ 873 \mathrm{~K}}} \underset{(\mathbf{x} \mathrm{~g})}{\mathbf{R}}$

$\mathbf{x g} g$ and $\mathbf{y g}$ are mass of \mathbf{R} and \mathbf{U}, respectively.
(Use: Molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of H, C and O as 1,12 and 16 , respectively)

- Watch Video Solution

6. For the following reaction scheme, percentage yields are given along the arrows:
$\mathrm{Mg}_{2} \mathrm{C}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{(4.0 \mathrm{~g})}{\mathbf{P}} \xrightarrow[75 \%]{\substack{\mathrm{NaNH}_{2} \\ \mathrm{MeI}}} \mathbf{Q} \xrightarrow[40 \%]{\substack{\text { red hot } \\ \text { iron tube } \\ 873 \mathrm{~K}}} \underset{(\mathbf{x ~ g})}{\mathbf{R}}$
$\mathbf{x g} g$ and $\mathbf{y g}$ are mass of \mathbf{R} and \mathbf{U}, respectively.
(Use: Molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of H, C and O as 1,12 and 16 , respectively)

D Watch Video Solution

7. For the reaction , $X(s) \leftrightarrow Y(s)+Z(g)$, the plot of $\ln \frac{p z}{p^{\theta}}$ versus $\frac{10^{4}}{T}$ is given below (in solid line), where p_{z} is the pressure (in bar) of
the gas at temperature T and $p^{\theta}=1 \mathrm{bar}$

(Given, $\frac{d(\ln K)}{d\left(\frac{1}{T}\right)}=-\frac{\Delta H^{\theta}}{R}$, where the
equilibrium constant, $K=\frac{p_{z}}{p^{\theta}}$ and the gas constant, $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

The value of standard enthalpy, ΔH^{θ} (in $k j m o l^{-1}$) for the given reaction is --------'
8. For the reaction,$X(s) \leftrightarrow Y(s)+Z(g)$, the plot of $\ln \frac{p z}{p^{\theta}}$ versus $\frac{10^{4}}{T}$ is given below (in solid line), where p_{z} is the pressure (in bar) of the gas at temperature T and $p^{\theta}=1 \mathrm{bar}$

(Given, $\frac{d(\ln K)}{d\left(\frac{1}{T}\right)}=-\frac{\Delta H^{\theta}}{R}$, where the
equilibrium constant, $K=\frac{p_{z}}{p^{\theta}}$ and the gas
constant, $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
The value of ΔS^{θ} (in $j m o l ~{ }^{-1}$) for the given reaction at 1000 K is

D Watch Video Solution

9. The boilingpoint of water in a 0.1 molal silver nitrate solution(solutionA) is $x^{\circ} C$. To this solution A, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a mew solution B. The difference in the boiling points of water in the two solutions A
and B is $y \times 10^{-2 \circ} C$
(Assume: Densities of the solutions A and B are the same as that of water and soluble salts dissociate completely.

Use:molal elevation constant (Ebullioscopic constant), $K_{b}=0.5 \mathrm{Kkgmol}^{-1}$ Boiling point of pure water as $100^{\circ} \mathrm{C}$)

The value of x is ------ .

Watch Video Solution

10. The boilingpoint of water in a 0.1 molal silver nitrate solution(solutionA) is $x^{\circ} C$. To
this solution A, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a mew solution B. The difference in the boiling points of water in the two solutions A and B is $y \times 10^{-2 \circ} C$
(Assume: Densities of the solutions A and B are the same as that of water and soluble salts dissociate completely.

Use:molal elevation constant (Ebullioscopic constant), $K_{b}=0.5 \mathrm{Kkgmol}^{-1}$ Boiling point
of pure water as $100^{\circ} \mathrm{C}$)

The value of $|y|$ is ---------.

D Watch Video Solution

Given:

11.

The compound, which on reaction with HNO_{3}
will give the product having degree of rotation, $[\alpha]_{D}={ }^{`}-52.7^{\wedge} @$ is(are)
(A)

(B)
B.

(C)

C.
(D)
D.

Answer:

- Watch Video Solution

12. The reaction of Q with PhSNa yields an organic compound(major product) that gives positive Carius test on treatment with $\mathrm{Na}_{2} \mathrm{O}_{2}$ followed by addition of BaCl_{2}. The correct option(s) for Q is(are)
(A)
A.

(B)
B.

(C)
c.

(D)

D.

Answer:

D Watch Video Solution

13. The correct statement(s) related to colloids
is(are)
A. The process of precipitating colloidal sol
by an electrolyte is called peptization
B. Colloidal solution freezes at higher
temperature than the true solution at
the same concentration
C. Surfactants form micelle above critical
micelle concentration(CMC). CMC
depends on temperature
D. Micelles are macromolecular colloids

- Watch Video Solution

14. An ideal gas undergoes a reversible isothermal expansion from state I to state II followed by a reversible adiabatic expansion from state II to state III. The correct plot(s) representing the changes from state I to state III is(are)

Answer: A:B:D

D Watch Video Solution
15. The correct statement(s) related to the metal extraction processes is(are)
A. A mixture of PbS and PbO undergoes
self-reduction to produce Pb and SO_{2}
B. In the extraction process of copper from
copper pyrites, silica is added to produce
copper silicate
C. Partial oxidation of sulphide ore of
copper by roasting, followed by selfreduction produces blister copper

D. In cyanide process, Zinc powder is

utilized to precipitate gold from

$$
N a\left[A u(C N)_{2}\right]
$$

Answer:

D Watch Video Solution

16. A mixture of two salts is used to prepare a

 solution S , which gives the following results:

The correct option(s) for the salt mixture is(are)
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
C. $\mathrm{Ag}\left(\mathrm{NO}_{3}\right)$ and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
D. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$

Answer:

D Watch Video Solution

17. The maximum number of possible isomers(including stereoisomers) which may be formed on mono-bromination of 1-methylcyclohex-1-ene using $B r_{2}$ and UV light is------------

D Watch Video Solution

18. In the reaction given below, the total number of atoms having $s p^{2}$ hybridization in
the major product P is--------------'

- Watch Video Solution

19. The total number of possible isomers for
$\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] B r_{2}$ is -------------.

D Watch Video Solution

20. The reaction sequence(s) that would lead

to o-xylene as the major product is(are)

(A)

(B)
B.

(C)
C.

(D)
D.

Answer:

21. Correct option(s) for the following sequence of reactions is(are)

A. $\mathrm{Q}=\mathrm{KNO}_{2}, \mathrm{~W}=\mathrm{LiAlH}_{4}$
B. $\mathrm{R}=$ benzenamine, $\mathrm{V}=\mathrm{KCN}$
C. $\mathrm{Q}=A g N O_{2}$, $\mathrm{R}=$ phenylmethanamine
D. $\mathrm{W}=\mathrm{LiAlH}_{4}, \mathrm{~V}=\mathrm{AgCN}$

Answer:

- Watch Video Solution

22. For the following reaction
$2 X+Y \xrightarrow{K} P$
the rate of reaction is $\frac{d[P]}{d t}=K[X]$. Two moles of X are mixed with 1 mole of Y to make
1.0L of solution. At $50 \mathrm{~s}, 0.5$ mole of Y is left in
the reaction mixture. The correct statement(s)
about the reaction is(are)
A. The rate constant, K, of the reaction is

$$
13.86 \times 10^{-4} s^{-1}
$$

B. Half -life of X is 50s

$$
\begin{aligned}
& \text { C. At } \quad 50 \mathrm{~s}, \quad-\frac{d[X]}{d t} \\
& 13.86 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1} \\
& \text { D. At } \quad 100 \mathrm{~s}, \quad-\frac{d[Y]}{d t} \\
& 3.46 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
=
$$

Answer:

23. Some standard electrode potentials at 298K are given below:
$\mathrm{Pb}^{2+} / \mathrm{Pb}$
$-0.13 \mathrm{~V}$
$\mathrm{Ni}^{2+} / \mathrm{Ni}$
$-0.24 \mathrm{~V}$
$\mathrm{Cd}^{2+} / \mathrm{Cd}$
$-0.40 \mathrm{~V}$
$\mathrm{Fe}^{2+} / \mathrm{Fe}$
$-0.44 \mathrm{~V}$

To a solution containing 0.001 M of X^{2+} and 0.1 M of Y^{2+}, the metal rods X and Y are inserted (at298K) and connected by a conducting wire. This resulted in dissolution of X. The correct combinations of X and Y, respectively is (are)
(Given: Gas constant, $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
Faraday constant,F=96500 Cmol^{-1})
A. Cd and Ni
B. Cd and Fe
C. Ni and Pb
D. Ni and Fe

Answer:
(Watch Video Solution
24. The pair(s) of complexes where in both exhibit tetrahedral geometry is(are)
A. $\left[\mathrm{FeCl}_{4}\right]^{- \text {and }}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
B. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-\mathrm{and}}\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
D. $\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$and $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$

Answer:

D Watch Video Solution

25. The correct statement(s) related to oxoacids of phosphorous is(are)
A. Upon heating, $\mathrm{H}_{3} \mathrm{PO}_{3}$ undergoes
disproportionation reaction to produce
$\mathrm{H}_{3} \mathrm{PO}_{4}$ and PH_{3}
B. While $\mathrm{H}_{3} \mathrm{PO}_{3}$ can act as reducing agent,
$\mathrm{H}_{3} \mathrm{PO}_{4}$ canot
C. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a monobasic acid.
D. The H atom of $\mathrm{P}-\mathrm{H}$ bond in $\mathrm{H}_{3} \mathrm{PO}_{3}$ is not ionizable in water

Answer:

- Watch Video Solution

26. At 298 K , the limiting molar conductivity of a weak monobasic acid is $4 \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.

At 298 K , for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $y \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$. At 298K, upon 20times dilution with water, the molar conductivty of the solution becomes $3 y \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ The value of α is

- Watch Video Solution

27. At 298 K , the limiting molar conductivity of a weak monobasic acid is $4 \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.

At 298 K , for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $y \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$. At 298K, upon 20times dilution with water, the molar conductivty of the solution becomes $3 y \times 10^{2} \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ The value of y is
28. Reaction of xg of Sn with HCl quantitatively
produced a salt. Entire amound of the salt reacted with yg of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt(quantitatively).
(Use Molar masses (in $\mathrm{gmol}^{\wedge}(-1)$) of $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$ and Sn as $1,12,14,16,35$ and 119 respectively). The
value of x is

- Watch Video Solution

29. Reaction of xg of Sn with HCl quantitatively produced a salt. Entire amound of the salt reacted with yg of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt(quantitatively).
(Use Molar masses (in gmol^{-1}) of $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$ and Sn as $1,12,14,16,35$ and 119 respectively). The value of is $------->y$

- Watch Video Solution

30. A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 ml of solution. Titration of 25.0 ml of this solution requires 12.5 ml of 0.03M KMnO_{4} solution to reac the end point.

Number of moles of Fe^{2+} present in 250 ml solution is $X \times 10^{-2}$ (consider complete dissolution of FeCl_{2}). The amont of iron present in the sample is $y \%$ by weight

Assume: KMnO_{4} reacts with Fe^{2+} in the solution

Use: Molear mass of iron as $56 \mathrm{gmol}^{-1}$ The value of X is------.

D Watch Video Solution

31. A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 ml of solution. Titration of 25.0 ml of this solution requires 12.5 ml of $0.03 \mathrm{M} \mathrm{KMnO}_{4}$ solution to reac the end point.

Number of moles of Fe^{2+} present in 250 ml solution is $X \times 10^{-2}$ (consider complete
dissolution of FeCl_{2}). The amont of iron
present in the sample is $y \%$ by weight
Assume: KMnO_{4} reacts with Fe^{2+} in the solution

Use: Molear mass of iron as $56 \mathrm{gmol}^{-1}$ The value of is------.y

D Watch Video Solution

32. The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In
gaseous state, the enrgy required for hololytic cleavage of a bond is called Bond Dissociation

Energy(BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formed. Shorter bonds typically stronger bonds. BDEs for some bonds are given below:

$$
\begin{aligned}
& { }_{\mathrm{H}_{3} \mathrm{C}-\mathrm{H}(\mathrm{~g})}^{\longrightarrow} \mathrm{H}_{3} \mathrm{C}^{\circ}(\mathrm{g})+\quad \dot{\mathrm{H}}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=105 \mathrm{kcal}_{\mathrm{col}}{ }^{-1} \\
& \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{Cl}^{\circ}(\mathrm{g})+\mathrm{Ci}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=58 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1} \\
& \mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}_{3} \mathrm{C}^{\circ}(\mathrm{g})+\mathrm{Ci}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=85 \mathrm{kcal}^{(\mathrm{mol}}{ }^{-1} \\
& \mathrm{H}^{-\mathrm{Cl}(g)} \longrightarrow \mathrm{H}^{\circ}(\mathrm{g})+\mathrm{Cl}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=103 \mathrm{kcal}^{\left(\mathrm{mol}^{-1}\right.}
\end{aligned}
$$

Correct match of the C-H bonds(shown in
bold) in column J with their BDE in column K is

Column \mathbf{J} Molecule	$\left.\begin{array}{c}\text { Column K } \\ \text { BDE }(\mathrm{kcal} \mathrm{mol} \\ \\ \end{array}\right)$
(P) $\mathbf{H}-\mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}$	(i) 132
(Q) $\mathbf{H}-\mathrm{CH}_{2} \mathrm{Ph}$	(ii) 110
(R) H-CH=$=\mathrm{CH}_{2}$	(iii) 95
(S) $\mathbf{H}-\mathbf{C} \equiv \mathrm{CH}$	(iv) 88

A. P-iii,Q-iv,R-ii,S-i

B. P-i,Q-ii,R-iii,S-iv

C. P-iii,Q-ii.R-i,S-iv
D. P-ii,Q-i,R-iv,S-iii

Answer:
33. The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the enrgy required for hololytic cleavage of a bond is called Bond Dissociation

Energy(BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formed. Shorter bonds typically stronger bonds. BDEs for some bonds are given below:

$$
\begin{aligned}
& \underset{3}{\mathrm{H}_{3} \mathrm{C}-\mathrm{H}(\mathrm{~g})} \longrightarrow \mathrm{H}_{3} \mathrm{C}^{\circ}(\mathrm{g})+\mathrm{H}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=105 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{Cl}^{\circ}(\mathrm{g})+\mathrm{Cl}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=58 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}_{3} \mathrm{C}^{\circ}(\mathrm{g})+\mathrm{Cl}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=85 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}^{\circ}(\mathrm{g})+\mathrm{Cl}^{\circ}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=103 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

For the following reaction
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { light }} \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$
the correct statement is
A. Initiation step is exothermic with
$\Delta H^{\circ}=-58 \mathrm{kcalmol}^{-1}$
B. Propagation step involving CH_{3}
formation is exothermic with
$\Delta H^{\circ}=-2 k^{\circ}$ calmol $^{-1}$
C. Propagation step involving $\mathrm{CH}_{3} \mathrm{Cl}$
formation is endothermic with
$\Delta H^{\circ}=+27$ kcalmol $^{-1}$
D. The reaction is exothermic with
$\Delta H^{\circ}=-25$ kcalmol $^{-1}$

Answer:

D Watch Video Solution

34. The reaction of $K_{3}\left[F e(C N)_{6}\right]$ eith freshly prepared FeSO_{4} solution procues a dark blue precipitate caleed Turnbull's blue. Reaction of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with the FeSO_{4} solution in complete absence of air produces a white precipitate X , which turns blue in air. Mixing the FeSO_{4} solution with NaNO_{3}, followed by a slow addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ through the side of the test tube produces a brown ring. Precipitate X is
A. $F e_{4}\left[F e(C N)_{6}\right]_{3}$
B. $F e\left[F e(C N)_{6}\right]$
C. $K_{2} F e\left[F e(C N)_{6}\right]$
D. $K F e\left[F e(C N)_{6}\right]$

Answer:

D Watch Video Solution

35. The reaction of $K_{3}\left[F e(C N)_{6}\right]$ eith freshly prepared FeSO_{4} solution procues a dark blue precipitate caleed Turnbull's blue. Reaction of
$K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with the FeSO_{4} solution in complete absence of air produces a white precipitate X , which turns blue in air. Mixing the FeSO_{4} solution with NaNO_{3}, followed by a slow addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ through the side of the test tube produces a brown ring.

Among the following, the brown ring is due to the formation of

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{SO}_{4}\right)_{2}\right]^{-2} \\
& \text { B. }\left[\mathrm{Fe}(\mathrm{NO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+} \\
& \text { C. }\left[\mathrm{Fe}(\mathrm{NO})_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]
\end{aligned}
$$

D. $\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$

Answer:

D Watch Video Solution

36. 1 mole of an ideal gas at 900 K , undergoes 1
reversible processes, I followed by II, as shown
below. If the work done by the gas in the 2 processes are same, the value of $\ln \left(\frac{V_{3}}{V_{2}}\right)$ is ---

(Given: molar heat capacity at constant volume, $C_{V, m}$ of the gas is $\frac{5}{2} R$)

D Watch Video Solution

37. Consider a helium(He) atom that absorbs a photon of wavelength 330 nm . The change in
the velocity (in $c m s^{-1}$) of He atom after the photon absorption is------.
(Assume: Momentum is consrves when photon is absorder.

Use:Plank constant=6.6 $\times 10^{-34} \mathrm{Js}$, Avogadro number $=6 \times 10^{23} \mathrm{~mol}^{-1}$, molar mass of $\mathrm{He}=$ $4 \mathrm{gmol}^{-1}$

D Watch Video Solution

38. Ozonolysis of ClO_{2} produces an oxide of chlorine. The average oxidation state of
chlorine in this oxide is------.
(Watch Video Solution
