

MATHS

BOOKS - JEE ADVANCED PREVIOUS YEAR

MOCK TEST 2022

1. if z is a complex number belonging to the set $S = \{z: |z-2+i| \ge \sqrt{5}\}$ and $z_0 \in S$ such that $\frac{1}{|z_0-1|}$ is maximum then arg $\left(\frac{4-z_0-\bar{z}_0}{z_0-\bar{z}_0+2i}\right)$ is A. $-\frac{\pi}{2}$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

D. $\frac{3\pi}{4}$

2.
$$M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$$

Where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ ar real numbers and I is an identity matric of 2×2
if $\alpha^* = \min$ of set $\{\alpha(\theta) : \theta \in [0.2\pi)\}$
and $\beta^* = \min$ of set $\{\beta(\theta) : \theta \in [0.2\pi)\}$
Then value of $\alpha^* + \beta^*$ is

A.
$$-\frac{37}{16}$$

B. $-\frac{31}{16}$

C.
$$-\frac{29}{16}$$

D. $-\frac{17}{16}$

Watch Video Solution

3. A line y=mx+1 meets the circle $(x - 3)^2 + (y + 2)^2 = 25$ at point P and Q. if mid point of PQ has abscissa of $-\frac{3}{5}$ then value of m satisfies

- A. $-3 \leq m < -1$
- $\texttt{B.}\, 2 \leq m < 4$

 $\mathsf{C.4} \leq m < 6$

D. $6 \leq m < 8$

4. The area of the region $ig\{(x,y)\!:\!xy\leq 8,1\leq y\leq x^2ig\}$ is

A.
$$16 \log_e 2 - \frac{14}{3}$$

B. $8 \log_e 2 - \frac{14}{3}$
C. $16 \log_e 2 - 6$
D. $8 \log_e 2 - \frac{7}{3}$

Answer:

5. Let α and β be the roots of $x^2 - x - 1 = 0$, with $\alpha > \beta$. For all positive integers n, define $a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, n \ge 1$ $b_1 = 1$ and $b_n = a_{n-1} + a_{n+1}, n \ge 2$.

Then which of the following options is/are correct ?

A.
$$a_1 + a_2 + a_3 + \dots + a_n = a_{n+2} - 1$$
 for all $n \ge 1$
B. $\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$
C. $b_n = \alpha^n + \beta^n$ for all $n \ge 1$
D. $\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$

Answer:

6. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and adj
 $M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$

where a and b are real numbers. Which of the following options

is/are correct ?

A. a + b = 3B. $(adjM^{-1}) + adjM^{-1} = -M$ C. det (adj M^2) = 81 D. If M $M \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, then $\alpha - \beta + \gamma = 3$

Answer:

7. There are three bags B_1 , B_2 , B_3 , B_1 contians 5 red and 5 green balls. B_2 contains 3 red and 5 green balls and B_3 contains 5 red and 3 green balls, bags B_1 , B_2 and B_3 have probabilities 3/10, 3/10, and 4/10

respectively of bieng chosen. A bag is selected at randon and a ball is randomly chosen from the bag. then which of the following options is/are correct?

A. Probability that the chosen ball is green, given that the

selected bag is
$$B_3$$
, equals $rac{3}{8}$

- B. Probability that the chosen ball is green equals $\frac{39}{80}$
- C. Probability that the selected bag is B_3 , given that the

chosen ball is green, equals
$$\frac{4}{13}$$

D. Probability that the selected bag is B_3 and the chosen

ball is green equals
$$\frac{3}{10}$$

Watch Video Solution

8. In a non right angled triangle ΔPQR , let p, q, r denote the lengths of the sides opposite to the angle P,Q,R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. if $p = \sqrt{3}, q = 1$ and the radius of the circumcircle of the ΔPQR equals to 1, then which of the followign options is/are correct?

/3

A. Length of RS
$$= \frac{\sqrt{7}}{2}$$

B. Area of $\Delta SOE = \frac{\sqrt{3}}{12}$
C. Length of OE $= \frac{1}{6}$
D. Radius of incircle of $\Delta PQR = \frac{\sqrt{3}}{2}(2 - \sqrt{3})$

9. Define the collection $\{E_1, E_2, E_3, \dots\}$ of ellipses and $\{R_1, R_2, R_3, \dots\}$ of rectangles as follows: $E_1 = \frac{x^2}{9} + \frac{y^2}{4} = 1$, R_1 : rectangle of largest area, with sides parallel to the axes, inscribed in E_1 , E_n : ellipse $\frac{x^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ of largest are inscribed in

 $R_{n-1}, n > 1.$

then which of the following options is/are corrct?

A. The eccentricities of E_{18} and E_{19} are NOT equal

B.
$$\sum_{n=1}^{N}$$
 (area of R_n) $\,<\,$ 24, for each positive integer N

C. The length of latus rectum of E_9 is $\frac{1}{6}$

D. The distance of a focus from the centre in E_9 is $\frac{\sqrt{5}}{32}$

Answer:

Watch Video Solution

10. Let
$$f: R \to R$$
 be given by
 $f(x) = \begin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1 & x < 0 \\ x^2 - x + 1 & 0 \le x < 1 \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3} & 1 \le x < 3 \\ (x - 2)\log_e(x - 2) - x + \frac{10}{3} & x \ge 3 \end{cases}$

Then which of the following options is/are correct?

A. f is increasing on $(\,-\infty,\,0)$

B. f' has a local maximum at x = 1

C.f is onto

D. f' is NOT differentiable at x = 1

Watch Video Solution

11. let T denote a curve y = f(x) which is in the first quadrant and let the point (1,0) lie on it. Let the tangent to T at a point P intersect the y-axis at Y_P and PY_P has length 1 for each poinit P on T. then which of the following option may be correct?

A.
$$y = \log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) - \sqrt{1 - x^2}$$

B. $xy' + \sqrt{1 + x^2} = 0$
C. $y = -\log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) + \sqrt{1 - x^2}$
D. $xy' - \sqrt{1 - x^2} = 0$

Answer:

12. Let
$$L_1$$
 and L_2 denote the lines $\overrightarrow{r}=\overrightarrow{i}+\lambda\Big(-\hat{i}+2\hat{j}+2\hat{k}\Big),\lambda\in R$ and $\overrightarrow{r}=\mu\Big(2\hat{i}-\hat{j}+2\hat{k}\Big),\mu\in R$

Respectively if L_3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following options describe(s) L_3 ?

$$egin{aligned} \mathsf{A}. \overrightarrow{r} &= rac{2}{9} \Big(4 \hat{i} + \hat{j} + \hat{k} \Big) + t \Big(2 \hat{i} + 2 \hat{j} - \hat{k} \Big), t \in \mathbb{R} \ \mathsf{B}. \overrightarrow{r} &= rac{2}{9} \Big(2 \hat{i} - \hat{j} + 2 \hat{k} \Big) + t \Big(2 \hat{i} + 2 \hat{j} - \hat{k} \Big), t \in \mathbb{R} \ \mathsf{C}. \overrightarrow{r} &= rac{1}{3} \Big(2 \hat{i} + \hat{k} \Big) + t \Big(2 \hat{i} + 2 \hat{j} - \hat{k} \Big), t \in \mathbb{R} \ \mathsf{D}. \overrightarrow{r} &= t \Big(2 \hat{i} + 2 \hat{j} - \hat{k} \Big), t \in \mathbb{R} \end{aligned}$$

Answer:

13. What $\omega
eq 1$ be a cube root of unity. Then minimum value of set $\left\{ \left| a+b\omega+c\omega^2 \right|^2$, a,b,c are distinct non zero intergers) equals

Watch Video Solution

14. Let AP(a, d) denote the set of all the terms of an infinite arithmetic progression with first term a and common difference d > 0. If $AP(1,3) \cap AP(2,5) \cap AP(3,7) = AP(a,d)$ then a + d equals

Watch Video Solution

15. Let S be the set of matrices of order 3×3 such that all elemtns of the matrix belong to $\{0, 1\}$

let $E_1 = \{A \in S \colon |A| = 0\}$ where $|\mathsf{A}|$ denotes determinant of matrix A

 $E_2=\{A\in S\colon {
m sum \ of \ elements \ of \ } A=7
angle$ find $P(E_1/E_2)$

Watch Video Solution

16. let the point B be the reflection of the point A(2,3) with respect to the line 8x - 6y - 23 = 0. let T_A and T_B be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles T_A and T_B such that both the circles are on the same side of T. if C is the point of intersection of T and the line passing through A and B then the length of the line segment AC is

17. If
$$I=rac{2}{\pi} \int_{-\pi/4}^{\pi/4} rac{dx}{(1+e^{\sin x})(2-\cos 2x)}$$
 then $27I^2$ equals

Watch Video Solution

18. Three lines are given by

$$egin{aligned} r &= \lambda \hat{i}, \lambda \in R \ r &= \mu \Big(\hat{i} + \hat{j} \Big), \mu \in R \ \end{aligned}$$
 and $r &= v \Big(\hat{i} + \hat{j} + \hat{k} \Big), v \in R \end{aligned}$

Let the lines cut the plane x+y+z=1 at the poitns A, B, and C respecitvely . If the area of the tiangle ABC is Δ then the value of $(6\Delta)^2$ equals.....