©゙’ doubtnut

MATHS

BOOKS - JEE ADVANCED PREVIOUS YEAR

MOCK TEST 2022

Question

1. if z is a complex number belonging to the set $S=\{z:|z-2+i| \geq \sqrt{5}\}$ and $z_{0} \in S$ such that $\frac{1}{\left|z_{0}-1\right|}$ is maximum then $\arg \left(\frac{4-z_{0}-\bar{z}_{0}}{z_{0}-\bar{z}_{0}+2 i}\right)$ is
A. $-\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{4}$

Answer:

(D) Watch Video Solution

2. $M=\left[\begin{array}{ll}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\alpha I+\beta M^{-1}$

Where $\alpha=\alpha(\theta)$ and $\beta=\beta(\theta)$ ar real numbers and I is an identity matric of 2×2
if $\alpha^{*}=\min$ of $\operatorname{set}\{\alpha(\theta): \theta \in[0.2 \pi)\}$
and $\beta^{*}=\mathrm{min}$ of set $\{\beta(\theta): \theta \in[0.2 \pi)\}$
Then value of $\alpha^{*}+\beta^{*}$ is
A. $-\frac{37}{16}$
B. $-\frac{31}{16}$
C. $-\frac{29}{16}$
D. $-\frac{17}{16}$

Answer:

D Watch Video Solution

3. A line $y=m x+1$ meets the circle $(x-3)^{2}+(y+2)^{2}=25$ at point P and Q. if mid point of $P Q$ has abscissa of $-\frac{3}{5}$ then value of m satisfies
A. $-3 \leq m<-1$
B. $2 \leq m<4$
C. $4 \leq m<6$
D. $6 \leq m<8$

- Watch Video Solution

4. The area of the region $\left\{(x, y): x y \leq 8,1 \leq y \leq x^{2}\right\}$ is
A. $16 \log _{e} 2-\frac{14}{3}$
B. $8 \log _{e} 2-\frac{14}{3}$
C. $16 \log _{e} 2-6$
D. $8 \log _{e} 2-\frac{7}{3}$

Answer:

- Watch Video Solution

5. Let α and β be the roots of $x^{2}-x-1=0$, with $\alpha>\beta$.

For all positive integers n , define $a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n \geq 1$ $b_{1}=1$ and $b_{n}=a_{n-1}+a_{n+1}, n \geq 2$.

Then which of the following options is/are correct ?
A. $a_{1}+a_{2}+a_{3}+\ldots .+a_{n}=a_{n+2}-1$ for all $n \geq 1$
B. $\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}}=\frac{10}{89}$
C. $b_{n}=\alpha^{n}+\beta^{n}$ for all $n \geq 1$
D. $\sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}}=\frac{8}{89}$

Answer:

D Watch Video Solution

6. Let $\quad M=\left[\begin{array}{lll}0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1\end{array}\right]$ and
$M=\left[\begin{array}{lll}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$
where a and b are real numbers. Which of the following options is/are correct ?
A. $a+b=3$
B. $\left(a d j M^{-1}\right)+a d j M^{-1}=-M$
C. $\operatorname{det}\left(\operatorname{adj} M^{2}\right)=81$
D. If $M M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\alpha-\beta+\gamma=3$

Answer:

(D) Watch Video Solution
7. There are three bags $B_{1}, B_{2}, B_{3}, B_{1}$ contians 5 red and 5 green balls. B_{2} contains 3 red and 5 green balls and B_{3} contains 5 red and 3 green balls, bags B_{1}, B_{2} and B_{3} have probabilities $3 / 10,3 / 10$, and $4 / 10$
respectively of bieng chosen. A bag is selected at randon and a
ball is randomly chosen from the bag. then which of the following options is/are correct?
A. Probability that the chosen ball is green, given that the selected bag is B_{3}, equals $\frac{3}{8}$
B. Probability that the chosen ball is green equals $\frac{39}{80}$
C. Probability that the selected bag is B_{3}, given that the chosen ball is green, equals $\frac{4}{13}$
D. Probability that the selected bag is B_{3} and the chosen ball is green equals $\frac{3}{10}$

Answer:

- Watch Video Solution

8. In a non right angled triangle $\triangle P Q R$, let p, q, r denote the lengths of the sides opposite to the angle $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ respectively.

The median from R meets the side $P Q$ at S, the perpendicular
from P meets the side $Q R$ at E, and $R S$ and PE intersect at O. if
$p=\sqrt{3}, q=1$ and the radius of the circumcircle of the $\triangle P Q R$ equals to 1 , then which of the followign options is/are correct?
A. Length of RS $=\frac{\sqrt{7}}{2}$
B. Area of $\triangle S O E=\frac{\sqrt{3}}{12}$
C. Length of $\mathrm{OE}=\frac{1}{6}$
D. Radius of incircle of $\triangle P Q R=\frac{\sqrt{3}}{2}(2-\sqrt{3})$

Answer:

D Watch Video Solution

9. Define the collection $\left\{E_{1}, E_{2}, E_{3}, \ldots.\right\}$ of ellipses and $\left\{R_{1}, R_{2}, R_{3}, \ldots ..\right\}$ of rectangles as follows:
$E_{1}=\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$,
R_{1} : rectangle of largest area, with sides parallel to the axes, inscribed in E_{1},
$E_{n}:$ ellipse $\frac{x^{2}}{a_{n}^{2}}+\frac{y^{2}}{b_{n}^{2}}=1$ of largest are inscribed in $R_{n-1}, n>1$.
then which of the following options is/are corrct?
A. The eccentricities of E_{18} and E_{19} are NOT equal
B. $\sum_{n=1}^{N}$ (area of $\left.R_{n}\right)<24$, for each positive integer N
C. The length of latus rectum of E_{9} is $\frac{1}{6}$
D. The distance of a focus from the centre in E_{9} is $\frac{\sqrt{5}}{32}$

Answer:

- Watch Video Solution

$$
\begin{aligned}
& \text { 10. Let } f: R \rightarrow R \text { be given by } \\
& f(x)=\left\{\begin{array}{cl}
x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+3 x+1 & x<0 \\
x^{2}-x+1 & 0 \leq x<1 \\
\frac{2}{3} x^{3}-4 x^{2}+7 x-\frac{8}{3} & 1 \leq x<3 \\
(x-2) \log _{e}(x-2)-x+\frac{10}{3} & x \geq 3
\end{array}\right.
\end{aligned}
$$

Then which of the following options is/are correct?
A. f is increasing on $(-\infty, 0)$
B. f^{\prime} has a local maximum at $\mathrm{x}=1$
C. f is onto
D. f^{\prime} is NOT differentiable at $x=1$

Answer:

- Watch Video Solution

11. let T denote a curve $y=f(x)$ which is in the first quadrant and let the point $(1,0)$ lie on it. Let the tangent to T at a point P intersect the y-axis at Y_{P} and $P Y_{P}$ has length 1 for each poinit P on T. then which of the following option may be correct?
A. $y=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)-\sqrt{1-x^{2}}$
B. $x y^{\prime}+\sqrt{1+x^{2}}=0$
C. $y=-\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\sqrt{1-x^{2}}$
D. $x y^{\prime}-\sqrt{1-x^{2}}=0$

Answer:
12. Let L_{1} and L_{2} denote the lines
$\vec{r}=\vec{i}+\lambda(-\hat{i}+2 \hat{j}+2 \hat{k}), \lambda \in R$
$\vec{r}=\mu(2 \hat{i}-\hat{j}+2 \hat{k}), \mu \in R$
Respectively if L_{3} is a line which is perpendicular to both L_{1} and L_{2} and cuts both of them, then which of the following options describe(s) L_{3} ?
A. $\vec{r}=\frac{2}{9}(4 \hat{i}+\hat{j}+\hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in \mathbb{R}$
B. $\vec{r}=\frac{2}{9}(2 \hat{i}-\hat{j}+2 \hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in \mathbb{R}$
c. $\vec{r}=\frac{1}{3}(2 \hat{i}+\hat{k})+t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in \mathbb{R}$
D. $\vec{r}=t(2 \hat{i}+2 \hat{j}-\hat{k}), t \in \mathbb{R}$

Answer:

13. What $\omega \neq 1$ be a cube root of unity. Then minimum value of set $\left\{\left|a+b \omega+c \omega^{2}\right|^{2}, a, b, c\right.$ are distinct non zero intergers) equals

- Watch Video Solution

14. Let $\operatorname{AP}(a, d)$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference

$$
d>0 \text {. If } A P(1,3) \cap A P(2,5) \cap A P(3,7)=A P(a, d)
$$

then $a+d$ equals \qquad

- Watch Video Solution

15. Let S be the set of matrices of order 3×3 such that all elemtns of the matrix belong to $\{0,1\}$
let $E_{1}=\{A \in S:|A|=0\}$ where $|A|$ denotes determinant of matrix A
$E_{2}=\{A \in S:$ sum of elements of $A=7\}$ find $P\left(E_{1} / E_{2}\right)$

- Watch Video Solution

16. let the point B be the reflection of the point $A(2,3)$ with respect to the line $8 x-6 y-23=0$. let T_{A} and T_{B} be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles T_{A} and T_{B} such that both the circles are on the same side of T. if C is the point of intersection of T and the line passing through A and B then the length of the line segment AC is

- Watch Video Solution

17. If $I=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} \frac{d x}{\left(1+e^{\sin x}\right)(2-\cos 2 x)}$ then $27 I^{2}$ equals

(D) Watch Video Solution

18. Three lines are given by
$r=\lambda \hat{i}, \lambda \in R$
$r=\mu(\hat{i}+\hat{j}), \mu \in R$
and $r=v(\hat{i}+\hat{j}+\hat{k}), v \in R$
Let the lines cut the plane $x+y+z=1$ at the poitns A, B, and
C respecitvely. If the area of the tiangle $A B C$ is Δ then the value of $(6 \Delta)^{2}$ equals
