©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEE ADVANCED PREVIOUS

YEAR

JEE ADVANCED 2021

Question

1. The smallest division on the main scale of a
vernier calipers is 0.1 cm . Ten divisions of the
vernier scale correspond to nine divisions of
the main scale. The figure below on the left shows the reading of this calipers with no gap between in two jaws. The figure on the right shows the reading with a solid sphere held between the jaws. The correct diameter of the sphere is.

A. 3.07 cm
B. 3.11 cm

C. 3.15 cm

D. 3.17 cm

Answer:

D Watch Video Solution

2. An ideal gas undergoes a four step cycle as
shown in the P-V diagram below. During this
cycle heat is absorbed by the gas in

A. steps 1 and 2
B. steps 1 and 3
C. steps 1 and 4
D. steps 2 and 4

Answer:

D Watch Video Solution

3. An extended object is placed at point O ,

10 cm in front of a convex lens L1 and concave
lens L2 is placed 10 cm behind it as shown in figure. The radii of curvature of all curved surfaces in both the lenses are 20 cm . The refractive index of both the lenses is 1.5 . The
total magnification of this lens system is.

A. 0.4
B. 0.8
C. 1.3
D. 1.6

Answer: B
4. A heavy nucleus Q of half life 20 minutes
undergoes alpha decay with probability of 60% and beta decay with probability of 40%. Initially number of Q nuclei is 1000 . The number of alpha decay of Q in the first one hour is.
A. 50
B. 75
C. 350
D. 525

Answer:

D Watch Video Solution

5. A projectile is thrown from a point O on the ground at an angle 45° from the vertical and with a speed $5 \sqrt{2} \frac{m}{s}$. The projectile at highest point of its tracjectory splits into two equal parts. One part falls vertically down to the ground 0.5 s after the splitting. The other part t seconds after the splitting falls to the ground at a distance x meters from the point
O. The acceleration due to gravity $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The value of t is

- Watch Video Solution

6. A projectile is thrown from a point O on the ground at an angle 45° from the vertical and with a speed $5 \sqrt{2} \frac{m}{s}$. The projectile at highest point of its tracjectory splits into two equal parts. One part falls vertically down to the ground 0.5 s after the splitting. The other part
t seconds after the splitting falls to the
ground at a distance x meters from the point O. The acceleration due to gravity $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The value of x is

D Watch Video Solution

7. In the circuit shown below, the switch S is
connected to position P for a long time so
that the charge on the capacitor become
$q 1 \mu C$. The S is switched to psition Q . After a
long time, the charge on the capacitor is $q 2 \mu C$

- Watch Video Solution

8. In the circuit shown below, the switch S is connected to position P for a long time so
that the charge on the capacitor become $q 1 \mu C$. The S is switched to psition Q . After a long time, the charge on the capacitor is $q 2 \mu C$

- Watch Video Solution

9. Two point charges $-Q$ and $+\frac{Q}{\sqrt{3}}$ are placed in the xy plane at the origin $(0,0)$ and a point $(2,0)$ resp as shown in figure. This results in an equipotential circle of radius R and potential $\mathrm{V}=0$ in the xy plane with its center at
(b,0). All lengths are measured in meters.

The
value of R is m

D Watch Video Solution

10. Two point charges $-Q$ and $+\frac{Q}{\sqrt{3}}$ are placed in the xy plane at the origin $(0,0)$ and a point $(2,0)$ resp as shown in figure. This results
in an equipotential circle of radius R and potential $\mathrm{V}=0$ in the xy plane with its center at (b,0). All lengths are measured in meters.

The
value of b ism

D Watch Video Solution
11. A horizontal force F is applied at the centre of mass of a cylindrical object of mass m and
radius R, perpendicular to its axis as shown in
figure. The coefficient of friction between the object and the ground is μ. The center of mass of the object has an acceleration a. The acceleration due to gravity is g. Given that the object rolls without slipping, which of the
following statement(s) is/are correct?.

A. For the same F, the value of a does not
depend on whether the cylinder is solid
or hollow.
B. For a solid cylinder the maximum
possible value of a id $2 \mu g$
C. The magnitude of the frictional force on
the object due to the ground is always
$\mu m g$
D. For a thin-walled hollow cylinder

$$
a=\frac{F}{2} m
$$

Answer:

D Watch Video Solution

12. A wide slab consisting of two media of refractive indices n_{1} and n_{2} is placed in air as
shown in figure. A ray of light is incident from medium n_{1} to n_{2} at an angle θ where $\sin (\theta)$ is slightly larger than $\frac{1}{n_{1}}$. Take refractive index of air as 1 . Which of the following statements

A. The light ray enters air if $n_{2}=n_{1}$
B. The light ray is finally reflected back into
the medium of refractive index n_{1} if
$n_{2}<n_{1}$
C. The light ray is finally reflected back into
the medium of refractive index n_{1} if
$n_{2}>n_{1}$
D. The light ray is reflected back into the
medium of refractive index n_{1} if $n_{2}=1$

Answer: A

13. A particle of mass $M=0.2 \mathrm{~kg}$ is initially at rest in $x y$ plane at a point $(x=-l, y=-h)$ where I
$=10 \mathrm{~m}$ and $\mathrm{h}=1 \mathrm{~m}$. The particle is accelerated at
time $\mathrm{t}=\mathrm{O}$ with a constant acceleration $a=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ along the positive x -direction. Its angular momentum and torque w.r.t origin in SI units are represented by \vec{L} and $\vec{\tau}$ resp. If
$\hat{k}=\hat{i} x \hat{j}$ then which of the following
statements is/are correct?
A. The particle arrives at point ($x=I, y=-h$)
at time $t=2 s$
B. $\vec{\tau}=2 \hat{k}$ when the particle passes
through the point ($x=I, y=-h$)
C. $\vec{L}=4 \hat{k}$ when the particle passes
through the point ($x=I, y=-h$)
D. $\vec{\tau}=\hat{k}$ when the particle passes
through the point $(x=0, y=-h)$

Answer:

14. Which of the following statement is/are correct about the spectrum of hydrogen atom?
A. ratio of longest wavelength to shortest
wavelength in balmer series is $9 / 5$
B. there is an overlap between wavelength
ranges of balmer and paschen series
C. wavelength of lyman series are given by

$$
\left(1+\frac{1}{m^{2}}\right) \lambda_{0} \text { where } \lambda_{0} \text { is shortest }
$$

wavbelength of lyman series and m is an
integer
D. wavelength ranges of lyman and balmer
series do not overlap

Answer:

D Watch Video Solution

15. A long straight wire carries a current $\mathrm{I}=2 \mathrm{~A}$.

A semi circular conducting rod is placed beside it on two conducting parallel rails of
negligible resistance. Both rails are parallel to
wire. The wire , the rod, and the railslie in same
horizontal plane as shownin figure. Two ends of semi circular rod are at distances 1 cm and

4 cm from the wire. At time $\mathrm{t}=0$ rod starts moving on the rails with a speed $v=3 \mathrm{~m} / \mathrm{s}$. A resistor $\mathrm{R}=1.4$ ohm and capacitor $C_{0}=5 \mu F$ are connected in series between rails. At time t
$=0, C_{0}$ is uncharged. Which of the following

A. maximum current through R is $1.2 x$

$$
10^{-6} \mathrm{~A}
$$

B. maximum current through R is $3.8 x$ $10^{-6} \mathrm{~A}$
C. maximum charge on capacitor C_{0} is

$$
8.4 \times 10^{-11} \mathrm{C}
$$

D. maximum charge on capacitor C_{0} is 2.4 x

$$
10^{-12} \mathrm{C}
$$

Answer: A

D Watch Video Solution

16. A cylindrical tube with its base as shown is
filled with water. It is moving down with a constant acceleration a along a fixed inclined
plane with angle $\theta=45^{\circ}$ P1 and P2 are pressure points 1 and 2 resp located at base of tube. Let $\beta=\frac{P 1-P 2}{\rho g d}$. Which statement is

true?

$$
\begin{aligned}
& \text { A. } \beta=0 \text { when } a=\frac{g}{\sqrt{2}} \\
& \text { B. } \beta>0 \text { when } a=\frac{g}{\sqrt{2}}
\end{aligned}
$$

> C. $\beta=\frac{\operatorname{sqr}(2)-1}{\sqrt{2}}$ when $a=\frac{g}{2}$
> D. $\beta=\frac{1}{\sqrt{2}}$ when $a=\frac{g}{2}$

Answer:

D Watch Video Solution

17. An α particle (mass $=4 \mathrm{amu}$) and a singly
charged sulfur ion (mass 32 amu) are initially
at rest. They are accelerated through potential
V and then allowed to pass into a region of uniform magnetic field which is normal to
velocities of the particles. Within this region
the α particle and the sulfur ion move in circular orbits of radii r_{a} and r_{s} resp. The ratio $\left(\frac{r_{s}}{r_{a}}\right)$ is

D Watch Video Solution

18. A thin rod of mass M and length a is free to
rotate in horizontal plane about a fixed vertical axis passing through point O. A thin circular disc of mass M and of radius $a / 4$ is pivoted on this rod with its center at a
distance $a / 4$ from the free end so that it can rotate freely about its vertical axis. Assume that both rod and disc have uniform density and they remain horizontal during motion. An outside stationary observer finds the rod rotating with an angular velocity Ω and the disc rotating about its vertical axis with angular velocity 4Ω. Total angular momentum of system about point O is $\left(\frac{M a^{2} \Omega}{48}\right) n$. The
value
of
n

- Watch Video Solution

19. A small object is placed at the center of a large evacuated hollow spherical container.

Assume that the container is maintained at
OK. At time $t=0$ the temperature of object is
200K. The temperature of the object becomes

100 K at $t=t_{1}$ and 50K at $t=t_{2}$. Assume objectand container to be ideal black bodies.

The heat capacity of object does not depend on temperature. Ratio $\frac{t_{2}}{t_{1}}$ is

- Watch Video Solution

20. One end of a horizontal uniform beam of
weight W and length L is hinged on a vertical wall at point O and its other end is supported by a light inextensible rope. The other end of the rope is fixed at point Q at a height L above
the hinge at point O . A block of weight αW is
attached at the point Q at a height L above the hinge at point O . A block of weight αW is attached at the point P of the beam as shown
in the figure. The rope can sustain a maximum
tension of $2(\sqrt{2}) W$. Which of the following statements is/are

A. vertical component of reaction force at

O does not depend on α
B. horizontal component of reaction force
at O is equal to W for $\alpha=0.5$
C. tension in rope is 2 W for $\alpha=0.5$
D. rope breaks if $\alpha>1.5$

Answer:

- Watch Video Solution

21. A source approaching with speed u towards the open end of a stationary pipe of length L is emitting a sound of frequency f_{s}. The farther end of the pipe is closed. The speed of sound in air is v anf f_{0} is the
fundamental frequency of the pipe. For which of the following combination of u and f_{s} will the sound reaching the pipe lead to a resistance.
A. $u=0.8 v \operatorname{anf} f_{s}=f_{0}$

$$
\text { B. } u=0.8 v \text { anf } f_{s}=2 f_{0}
$$

$$
\begin{aligned}
& \text { C. } u=0.8 v \text { anf } f_{s}=0.5 f_{0} \\
& \text { D. } u=0.5 v \text { anf } f_{s}=1.5 f_{0}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. For a prism angle $\theta=60^{\circ}$ the refractive indices of the left half and right half are resp, n 1 and n 2 (n2gen1) as shown in figure. The angle of incidence i is chosen such that the incident light rays will have minimum
deviation if $\mathrm{n} 1=\mathrm{n} 2=\mathrm{n}=1.5$. For case of unequal refractive indices $\mathrm{n} 1=\mathrm{n}$ and $n 2=n+\partial a t(n)$ the angle of emergence $e=i+\delta(e)$. Which of the following statement is/are correct?
A. value of $\delta(e)$ (in radians) is greater than
that of $\delta(n)$
B. value of $\delta(e)$ (in radians) is propotional
$\delta(n)$
C. $\delta(e)$ lies between 2.0 and 3.0 milliradians

$$
\delta(n)=2.8 x 10^{-3}
$$

D. $\delta(e)$ lies between 1.0 and 1.6 milliradians

$$
\delta(n)=2.8 x 10^{-3}
$$

Answer:

D Watch Video Solution

23. A physical quantity \vec{S} is defined as $\vec{S}=\frac{\vec{E} x \vec{B}}{\mu_{0}}$. The dim ensionofvec(S) \quad are
the same as the dimension of which of the following quantities?
A. energy/(charge x current)
B. force/(length x time)
C. energy/volume
D. power/area

Answer:

D Watch Video Solution

24. A heavy nucleus N at rest undergoes fission
$N \rightarrow P+Q$ are two lighter nuclei.Let
$\delta=M_{N}-M_{P}-M Q$. Speeds of P and Q are
v_{p} and v_{q} resp. If c is speed of light which of the following statement is/are correct?
A. $E_{P}+E_{Q}=c^{2} \delta$
B. $E_{P}=\left(\frac{M_{P}}{M_{P}+M Q}\right) c^{2} \delta$
C. $\frac{V_{P}}{V_{Q}}=\frac{M_{Q}}{M_{P}}$
D. magnitude of momentum for P as well as

$$
\mathrm{Q} \text { is } c \sqrt{2 \mu \delta} \text { where } \mu=\frac{M_{P} M_{Q}}{M_{P}+M_{Q}}
$$

Answer:

25. Two concentric circular loops one of radius
R and other of radius $2 R$ lie in the $x y$ plane with the origin as their common center . Smaller loop carries current 11 in anticlockwise direction and larger loop carries 12 in clockwise direction with $I_{2}>2 I_{1}, \operatorname{vec}(\mathrm{~B})(\mathrm{x}, \mathrm{y})^{`}$ denotes magnetic feld at a point (x, y) in xy plane. Which of the following statements are correct?

- Watch Video Solution

26. A soft plastic bottle filled with water of density $1 \mathrm{gm} / \mathrm{cc}$ carries an inverted glass test tube with some air(ideal gas) trapped as shown in the figure. The test-tube has a mass
of 5 gm and it is made of a thick glass of density $2.5 \mathrm{gm} / \mathrm{cc}$. Initially the bottle is sealed at atmospheric pressure $p_{0}=10^{5} \mathrm{~Pa}$ so that
the volume of the trapped air is $v_{0}=3.3 c$.

When the bottle is squeezed from outside at
constant temperature, the pressure inside
rises and the volume of the trapped air reduces. It is found that the test tube begins
to sink at pressure $p_{0}+\delta(p)$ without changing its orientation. At this pressure the volume of the trapped air is $v_{0}-\delta(v)$. Let

$$
\delta(v)=X \text { and } \delta(p)=Y \times 10^{3} P a
$$

Value of X is

- Watch Video Solution

27. A soft plastic bottle filled with water of density $1 \mathrm{gm} / \mathrm{cc}$ carries an inverted glass test tube with some air(ideal gas) trapped as shown in the figure. The test-tube has a mass
of 5 gm and it is made of a thick glass of density $2.5 \mathrm{gm} / \mathrm{cc}$. Initially the bottle is sealed at atmospheric pressure $p_{0}=10^{5} \mathrm{~Pa}$ so that
the volume of the trapped air is $v_{0}=3.3 c$.

When the bottle is squeezed from outside at
constant temperature, the pressure inside
rises and the volume of the trapped air reduces. It is found that the test tube begins
to sink at pressure $p_{0}+\delta(p)$ without changing its orientation. At this pressure the volume of the trapped air is $v_{0}-\delta(v)$. Let

$$
\delta(v)=X \text { and } \delta(p)=Y \times 10^{3} P a
$$

Value of Y is

(D) Watch Video Solution
28. A pendulum consists of a bob of mass
$m=0.1 \mathrm{~kg}$ and a massless inextensible string
of length $l=1.0 \mathrm{~m}$. It is suspended from a
fixed point at height $h=0.9 m$ above a
frictionless horizontal floor. Initially, the bob of
the pendulum is lying on the floor at rest vertically below the point of suspension. A
horizontal impulse $P=02 . k g-m / s \quad$ is imparted to the bob lifts off the floor. The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is $\mathrm{J} \mathrm{kg}-\mathrm{m}^{2} / s$. The
kinetic energy of the pendulum just after the lift-off js K Joules.

The value of J is

D Watch Video Solution

29. A pendulum consists of a bob of mass
$m=0.1 \mathrm{~kg}$ and a massless inextensible string
of length $l=1.0 \mathrm{~m}$. It is suspended from a
fixed point at height $h=0.9 m$ above a
frictionless horizontal floor. Initially, the bob of
the pendulum is lying on the floor at rest
vertically below the point of suspension. A horizontal impulse $P=02 . k g-m / s \quad$ is imparted to the bob lifts off the floor. The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is $\mathrm{J} \mathrm{kg}-\mathrm{m}^{2} / s$. The kinetic energy of the pendulum just after the lift-off js K Joules.

The value of K is

D Watch Video Solution

30. In a circuit a metal filament lamp is connected in series with a capacitor of capacitance $C \mu F$ across a 200 V 50 Hz supply. Power consumed by lamp is 500W while voltage drop across it is 100 V . Assume tht there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase angle between current and supply voltage is ψ. Value of C is
31. In a circuit a metal filament lamp is connected in series with a capacitor of capacitance $C \mu F$ across a 200 V 50 Hz supply. Power consumed by lamp is 500W while voltage drop across it is 100 V . Assume tht there is no inductive load in the circuit . Take rms values of the voltages. The magnitude of the phase angle between current and supply voltage is ψ. Value of ψ is

- Watch Video Solution

32. A special metal S conducts electricity
without any resistance. A closed wire loop
made of S does not allow any change in flux
through itself by inducting a suitable current
to generate a compensating flux. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux.

Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance $r(\gg a)$ from the center of the loop with its north pole
always facing the loop, as shown in the figure below. The magnitude of magnetic field of a dipole m at a point on its axis at distance r is $\frac{\mu_{0} m}{2 \pi r^{3}}$. The magnitude of the force between two magnetic dipoles with moments m_{1} and m_{2} separated by a distance r on common axis with their north pole facing each other is $\frac{k m_{1} m_{2}}{r^{4}}$ where k is a constant of appropriate dimensions. The direction of this force is along
line
joining
two
dipoles.

Paragraph

A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance $r(\gg a)$ from the center of the loop with its north pole always facing the loop, as shown in the figure below.

The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $\frac{\mu_{0}}{2 \pi} \frac{m}{r^{3}}$, where μ_{0} is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m_{1} and m_{2}, separated by a distance r on the common axis, with their north poles facing each other, is $\frac{k m_{1} m_{2}}{r^{4}}$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

center of the loop the current induced in the

loop will be proportional to

(D)
 Watch Video Solution

33. A special metal S conducts electricity
without any resistance. A closed wire loop
made of S does not allow any change in flux
through itself by inducting a suitable current
to generate a compensating flux. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux.

Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance $r(\gg a)$ from the center of the loop with its north pole
always facing the loop, as shown in the figure below. The magnitude of magnetic field of a dipole m at a point on its axis at distance r is $\frac{\mu_{0} m}{2 \pi r^{3}}$. The magnitude of the force between two magnetic dipoles with moments m_{1} and m_{2} separated by a distance r on common axis with their north pole facing each other is $\frac{k m_{1} m_{2}}{r^{4}}$ where k is a constant of appropriate dimensions. The direction of this force is along
line
joining
two
dipoles.

Paragraph

A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance $r(\gg a)$ from the center of the loop with its north pole always facing the loop, as shown in the figure below.

The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $\frac{\mu_{0}}{2 \pi} \frac{m}{r^{3}}$, where μ_{0} is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m_{1} and m_{2}, separated by a distance r on the common axis, with their north poles facing each other, is $\frac{k m_{1} m_{2}}{r^{4}}$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

done in bringing dipole from infinity to

distance r from center of the loop by given

process is proportional to

-
 Watch Video Solution

34. A thermally insulating cylinder has a thermally insulating and frictionless movable
partition in the middle, as shown in the figure below. On each side of the partition, there is one mole of an ideal gas, with specific heat at constant volume, $C_{v}=2 R$. Here, R is the gas constant. Initially, each side has a volume V_{0} and temperature T_{0}. The left side has an electric heater, which is turned on at very low power to transfer heat Q to the gas on the left side. As a result the partition moves slowly towards the right reducing the right side
volume to $\frac{V_{0}}{2}$. Consequently, the gas

temperature on the left and the right sides

become T_{L} and T_{R}, respectively. Ignore the
changes in the temperatures of the cylinder,
heater and
the

Paragraph

Abstract

A thermally insulating cylinder has a thermally insulating and frictionless movable partition in the middle, as shown in the figure below. On each side of the partition, there is one mole of an ideal gas, with specific heat at constant volume, $C_{V}=2 R$. Here, R is the gas constant. Initially, each side has a volume V_{0} and temperature T_{0}. The left side has an electric heater, which is turned on at very low power to transfer heat Q to the gas on the left side. As a result the partition moves slowly towards the right reducing the right side volume to $V_{0} / 2$. Consequently, the gas temperatures on the left and the right sides become T_{L} and T_{R}, respectively. Ignore the changes in the temperatures of the cylinder, heater and the partition.

Value of $\frac{T_{R}}{T_{0}}$

Paragraph

A thermally insulating cylinder has a thermally insulating and frictionless movable partition in the middle, as shown in the figure below. On each side of the partition, there is one mole of an ideal gas, with specific heat at constant volume, $C_{V}=2 R$. Here, R is the gas constant. Initially, each side has a volume V_{0} and temperature T_{0}. The left side has an electric heater, which is turned on at very low power to transfer heat Q to the gas on the left side. As a result the partition moves slowly towards the right reducing the right side volume to $V_{0} / 2$. Consequently, the gas temperatures on the left and the right sides become T_{L} and T_{R}, respectively. Ignore the changes in the temperatures of the cylinder, heater and the partition.

D Watch Video Solution

36. In order to measure internal resistance r1

of a cell emf E, a meter bridge of wire

resistance $\quad R_{0}=50 \Omega, \quad$ a resistance
another cell of emf E/2 and galvanometer G are used in circuit. If null point is founded at I
$=\quad 72 \mathrm{~cm}$.
then
value
of
$r 1$

- Watch Video Solution

37. Distance between two stars of masses $3 M_{S}$
and $6 M_{S}$ is 9 R.R is the mean distance between

Earth and Sun and M_{S} is mass of Sun. Two
stars orbit around their common center of mass in circular orbits with period $n T$. Value of n is

D Watch Video Solution

38. In a photoemission experiment the maximum KE of photoelectrons from metalsP,Q,R are E_{P}, E_{Q}, E_{R} and they are related by $E_{p}=2 E_{Q}=2 E_{r}$. In this experiment the same sources of monochromatice light is used for metals P and

Q while a different source of monochromatic
light is used for metal R. Work functions for metals P,Q,R are $4 \mathrm{eV}, 4.5 \mathrm{eV}$ and 5.5 eV . Energy of incident photon used for metal R in eV is

