©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEE ADVANCED PREVIOUS

YEAR

MOCK TEST 2022

Questions

1. Consider a spherical gaseous cloud of mass
density $\rho(r)$ in a free space where r is the
radial distance from its centre. The gaseous cloud is made of particle of equal mass m moving in circular orbits about their common centre with the same kinetic energy K. The force acting on the particles is their mutual gravitational force. If $\rho(r)$ is constant with time. the particle number density $\mathrm{n}(\mathrm{r})=\rho(r) / \mathrm{m}$ is : (g =universal gravitational constant)
A. $\frac{k}{2 \pi r^{2} m^{2} G}$
B. $\frac{k}{\pi r^{2} m^{2} G}$
C. $\frac{3 k}{\pi r^{2} m^{2} G}$

$$
\text { D. } \frac{k}{6 \pi r^{2} m^{2} G}
$$

Answer:

- Watch Video Solution

2. A thin spherical indulating shell of radius R
caries a uniformly distributed charge such
that the potential act its surface is V_{0}. A hole
with small area $\alpha 4 \pi R^{2}(\alpha \ll 1)$ is made in
the shell without effecting the rest of the
shell. Which one of the following is correct.
A. The potential at the center of the shell is
reduced by $2 \alpha V_{0}$
B. The magnitude of electric field at the
center of the shell is reduced by $\frac{\alpha V_{0}}{2 R}$
C. The ratio of the potential at the center
of the shell to that of the point at $1 / 2 \mathrm{R}$
from center towards the hole will be

$$
\frac{1-\alpha}{1-2 \alpha}
$$

D. The magnitude of electric field at a
the hole and shell's center, on a distance
$2 R$ from the center of the spherical shell
will be reduced by $\frac{\alpha V_{0}}{2 R}$

Answer:

D Watch Video Solution

3. A current carrying wire heats a metal rod.

The wire provides a constant power P to the rod. The metal rod is enclosed in an insulated container. It is observed that the temperature
(T) in the metal rod change with the (t) as $T(t)=T_{0}\left(1+\beta t^{1 / 4}\right)$ where β is a constant with appropriate dimension of temperature. the heat capacity of metal is :

$$
\begin{aligned}
& \text { A. } \frac{4 P\left(T(t)-T_{0}\right)^{2}}{\beta^{4} T_{0}^{4}} \\
& \text { B. } \frac{4 P\left(T(t)-T_{0}\right)^{4}}{\beta^{4} T_{0}^{5}} \\
& \text { C. } \frac{4 P\left(T(t)-T_{0}\right)^{2}}{\beta^{4} T_{0}^{2}} \\
& \text { D. } \frac{4 P\left(T(t)-T_{0}\right)}{\beta^{4} T_{0}^{2}}
\end{aligned}
$$

Answer:

4. In a radioactive sample. ${ }_{19}^{40} \mathrm{~K}$ nuclei either decay into stable ${ }_{\cdot 20}^{40} C a$ nuclei with decay constant 4.5×10^{-10} per year or into stable . ${ }_{18}^{40} \mathrm{Ar}$ nuclei with decay constant 0.5×10^{-10} per year. Given that in this sample all the stable ${ }_{\cdot 20}^{40} \mathrm{Ca}$ and ${ }_{18}^{40} \mathrm{Ar}$ nuclei are produced by the ${ }_{19}^{40} K$ nuclei only. In time $t \times 10^{9}$ years.

If the ratio of the sum of stable ${ }_{\cdot 20}^{40} \mathrm{Ca}$ and ${ }_{-18}^{40} \mathrm{Ar}$ nuclei to the radioactive ${ }_{19}^{40} \mathrm{~K}$ nuclei is 99. The value of t will be. [Given $: \ln 10=2.3$] A. 1.15
B. 9.2
C. 2.3
D. 4.6

Answer:

D Watch Video Solution

5. A cylindrical capillary tube of 0.2 mm radius
is made by joining two capillaries T 1 and T 2 of different materials having water contact angles of 0° and 60°, respectively. The
capillary tube is dipped vertically in water in two different configurations, case I and II as shown in figure. Which of the following option (s) is (are) correct?
[Surface tension of water $=0.075 \mathrm{~N} / \mathrm{m}$, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]

A. The correction in the height of water column raised in the tube, due to weight
of water contained in the meniscus, will
be different for both cases.

B. For case II, if the capillary joint is 5 cm

above the water surface, the height of
water column raised in the tube will be
3.75 cm . (Neglect the weight of the water
in the meniscus)
C. For case I, if the joint is kept at 8 cm
above the water surface, the height of
water column in the tube will be 7.5 cm .
(Neglect the weight of the water in the meniscus)
D. For case I, if the capillary joint is 5 cm
above the water surface, the height of
water column raised in the tube will be
more than 8.75 cm . (Neglect the weight
of the water in the meniscus)

Answer:

6. Conducting wire of parabolic shape, initially $y=x^{2}$ is moving with velocity $\vec{V}=v_{0} \hat{i}$ in a
$\vec{B}=B_{0}\left(1+\left(\frac{y}{L}\right)^{\beta}\right) \hat{k}$ as shown in figure. If $V_{0}, B_{0} L$ and B are +ve constant $\Delta \phi$ is potential difference develop between the ends of wire, then correct statements (s) is/are

A. $|\Delta \phi|=\frac{1}{2} B_{0} V_{0} L$ for $\beta=0$
B. $|\Delta \phi|=\frac{4}{3} B_{0} V_{0} L$ for $\beta=2$
C. $|\Delta \phi|$ remains the same if the parabolic
wire is replaced by a straight wire, $y=x$ initially, of length $\sqrt{2} L$
D. $|\Delta \phi|$ is proportional to the length of the
wire projected on the y-axis.

Answer:

D Watch Video Solution

7. In the circuit shown, initially there is no change on capacitors and keys S_{1} and S_{2} are open. The values of the capacitors are $C_{1}=10 \mu F, C_{2}=30 \mu F$ and $C_{3}=C_{4}=80 \mu F$

Which of the statement (s) is/are correct?
A. At time $\mathrm{t}=0$, the key S_{1} is closed, the
instantaneous current in the closed
circuit will be 25 mA .
B. If key S_{1} is kept closed for long time
such that capacitors are fully charged,
the voltage across the capacitor C_{1} will
be 4 V .
C. The key S_{1} is kept closed for long time
such that capacitors are fully charged,

Now key S_{2} is closed, at this time, the
instantaneous current across 30Ω
resistor (between points P and Q) will be
0.2 A (round off to $1^{\text {st }}$ decimal place).
D. If key S_{1} is kept closed for long time
such that capacitors are fully charged,
the voltage difference between points P and Q will be 10 V .

Answer:

8. A charged shell of radius R carries a total charge Q. Given ϕ as the flux of electric field through a closed cylindrical surface of height h, radius r \& with its centre same as that of the shell. Here centre of cylinder is a point on the axis of the cylinder which is equidistant from its top \& bottom surfaces. which of the followintg are correct.
A. If $h>2 R$ and $r>R$ then $\Phi=Q / \epsilon_{0}$

$$
\text { B. If } h<8 R / 5 \text { and } r=3 R / 5 \text { then } \Phi=0
$$

C. If $\quad h>2 R \quad$ and $\quad r=3 R / 5 \quad$ then

$$
\Phi=Q / 5 \in_{0}
$$

D. If $\quad h \rightarrow 2 R \quad$ and $\quad r=4 R / 5 \quad$ then

$$
\Phi=Q / 5 \epsilon_{0}
$$

Answer:

D Watch Video Solution

9. One mole of a monatomic ideal gas goes
through a thermodynamic cycle, as shown in
the volume versus temperature diagram. The
correct statement(s) is(are) :

A. Work done in this thermodynamic cycle

$$
\begin{aligned}
& (1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1) \\
& |W|=\frac{1}{2} R T_{0}
\end{aligned}
$$

B. The above thermodynamic cycle exhibits
only isochoric and adiabatic processes.
C. The ratio of heat transfer during
processes $\quad 1 \rightarrow 2 \quad$ and $\quad 2 \rightarrow 3$ is

$$
\left|\frac{Q_{1 \rightarrow 2}}{Q_{2 \rightarrow 3}}\right|=\frac{5}{3}
$$

D. The ratio of heat transfer during
processes $\quad 1 \rightarrow 2 \quad$ and $\quad 3 \rightarrow 4 \quad$ is

$$
\left|\frac{Q_{1 \rightarrow 2}}{Q_{3 \rightarrow 4}}\right|=\frac{1}{2}
$$

Answer:

D Watch Video Solution

10. Consider two palne convex lanse of same radius of curvature and refrective index n_{1} and n_{2} respectively. Now consider two cases :

\square

Case - I: When $n_{1}=n_{2}=n$, then equivalent focal length of length is f_{0}

Case - II : When $n_{1}=n, n_{2}=n+\Delta n$, then
equilivant focal length of lens is $f=f_{0}+\Delta f_{0}$

Then correct options are :
A. $\left|\frac{\Delta f}{f}\right|<\left|\frac{\Delta n}{n}\right|$
B. For $n=1.5, \Delta n=10^{-3}$ and $\mathrm{f}=20 \mathrm{~cm}$,
the value of $|\Delta f|$ will be 0.02 cm (round
off to $2^{\text {nd }}$ decimal place).
C. If $\frac{\Delta n}{n}<0$ then $\frac{\Delta f}{f}>0$
D. The relation between $\frac{\Delta f}{f}$ and $\frac{\Delta n}{n}$ remains unchanged if both the convex
surfaces are replaced by concave
surfaces of the same radius of curvature.

Answer:

D Watch Video Solution

11. Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of L , which of the following statement(s) is/are correct?
A. The dimension of linear momentum is

$$
L^{-1}
$$

B. The dimension of energy is L^{-2}
C. The dimension of force is L^{-3}
D. The dimension of power is L^{-5}

Answer:

- Watch Video Solution

12. Two identical moving coil galvanometers
have 10Ω resistance and full scale deflection at
$2 \mu A$ current. One of them is converted into a voltmeter of 100 mA full scale reading and the other into an Ammeter of 1 mA full scale current using appropriate resisters. These are then used to measure the voltage and current in the Ohm's law experiment with $R=1000 \Omega$ resistor by using an ideal cell. Which of the following statement(s) is(are) correct?
A. The resistance of the Voltmeter will be

$100 k \Omega$

B. The resistance of the Ammeter will be
0.02Ω (round off to $2^{\text {nd }}$ decimal place)
C. The measured value of R will be
$978 \Omega<R<982 \Omega$
D. If the ideal cell is replaced by a cell
having internal resistance of 5Ω then
the measured value of R will be more

Answer:

D Watch Video Solution

13. A particle is moved along a path $A B-B C-C D-$

DE-EF-FA, as shown in figure, in presence of a force $\vec{F}=(\alpha y \hat{i}+2 \alpha x \hat{j}) N$, where x and y are in meter and $\alpha=-1 N m^{-1}$. The work done on the particle by this force \vec{F} will be

Joule.

(

D Watch Video Solution
14. A block of weight 100 N is suspended by
copper and steel wires of same cross sectional
area $0.5 \mathrm{~cm}^{2}$ and, length $\sqrt{3} \mathrm{~m}$ and 1 m , respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is $\left(\Delta l_{C}\right)$ and elongation in steel wire is $\left(\Delta l_{s}\right)$, then the ratio $\frac{\Delta l_{C}}{\Delta l_{s}}$ is -

[Young's modulus for copper and steel are
$1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$,
respectively]

D Watch Video Solution

15. A train S 1 , moving with a uniform velocity of
$108 \mathrm{~km} / \mathrm{h}$, approaches another train S2 standing on a platform. An observer O moves with a uniform velocity of $36 \mathrm{~km} / \mathrm{h}$ towards S 2 ,
as shown in figure. Both the trains are blowing
whistles of same frequency 120 Hz . When O is
600 m away form S2 and distance between S1
and S 2 is 800 m , the number of beats heard by

O is [Speed of the sound $=330 \mathrm{~m} / \mathrm{s}$]

D Watch Video Solution
16. A parallel plate capacitor of capacitance C has spacing d between two plates having area
A. The region between the plates is filled with
N dielectric layers, parallel to its plates, each with thickness
$\delta=\frac{d}{N}$.The dielectric constant of the $m^{t h}$
layer is $K_{m}=K\left(1+\frac{m}{N}\right)$. For a very large
$N\left(<10^{3}\right)$, the capacitance C is $\alpha\left(\frac{k \in_{0} A}{d 1 n 2}\right)$.The value of $\alpha w i l l b e$. [in _0 'is the permittivity of free space]

D Watch Video Solution

17. A liquid at $30^{\circ} \mathrm{C}$ is poured verly slowly into a

Calorimeter that is at temperature of $110^{\circ} \mathrm{C}$.

The boiling temperature of the liquid is $80^{\circ} \mathrm{C}$.

It is found that the first 5 gm of the liquid completely evaporates. After pouring another 80 gm of the liquid the equilibrium temperature is found to be $50^{\circ} \mathrm{C}$. The ratio of the Latent heat of the liquid to its specific heat will be \qquad C°.
[Neglect the heat exchange with surrounding.]

- Watch Video Solution

18. A planar structure of length L and width W
is made of two different optical media of
refractive indices $n_{1}=1.5$ and $n_{2}=1.44$ as
shown in figure. If $L \gg W$, a ray entering
from end $A B$ will emerge from end $C D$ only if
the total internal reflection condition is met inside the structure. For $L=9.6 \mathrm{~m}$, if the incident angle θ is varied, the maximum time taken by a ray to exit the plane CD is $t \times 10^{-9}$ s, where t is \qquad
[Speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

- Watch Video Solution

