©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

SYSTEM OF PARTICLES \& ROTATIONAL

MOTION

Jee Main 5 Years At A Glance

1. A force of 40 N acts on a point B at the end of an L-shaped object, as shown in the figure.

The angle θ that will produce maximum moment of the force about point A is given by:
A. $\tan \theta=\frac{1}{4}$
B. $\tan \theta=2$
C. $\tan \theta=\frac{1}{2}$
D. $\tan \theta=4$

Answer: C
2. A thin circular disk in the xy plane as shown in the figure.

The ratio of its moment of inertia about z and z^{\prime} axes will be
A. $1: 2$
B. 1: 4
C. $1: 3$

D. $1: 5$

Answer: C

D View Text Solution

3. A uniform rod $A B$ is suspended from a point
X, at a variable distance from x from A, as
shown. To make the rod horizontal, a mass m is suspended from its end A. A set of (m, x)
values is recorded. The appropriate variable
that give a straight line, when plotted, are:

> A. $m, \frac{1}{x}$
> B. $m, \frac{1}{x^{2}}$
> C. m, x
> D. m, x^{2}

Answer: A

D View Text Solution
4. A thin rod $M N$, free to rotate in the vertical plane about the fixed end N , is held horizontal.

When the end M is released the speed of this end, when the rod makes an angle α with the horizontal, will be proportional to:
A. $\sqrt{\cos \alpha}$
B. $\cos \alpha$
C. $\sin \alpha$
D. $\sqrt{\sin \alpha}$

Answer: A

D View Text Solution

5. A particle is moving with a uniform speed in
a circular orbit of radius R in a central force
inversely proportional to the $n^{\text {th }}$ power of R. If the period of rotation of the particle is T, then
A. $T \propto R^{3 / 2}$ for any n
B. $T \propto R^{n / 2+1}$
C. $T \propto R^{(n+1) / 2}$
D. $T \propto R^{n / 2}$

Answer: C

D Watch Video Solution

6. Seven identical circular planar disks, each of mass M and radius R are welded symmetrically as shown. The moment of inertia of the arrangement about the axis normal to the
plane and passing through the point P is:
A. $\frac{19}{2} M R^{2}$
B. $\frac{55}{2} M R^{2}$
C. $\frac{73}{2} M R^{2}$
D. $\frac{181}{2} M R^{2}$

Answer: D

D View Text Solution
7. In a physical balance working on the principle of moments, when 5 mg weight is placed on the left pan, the beam becomes horizontal. Both the empty pans of the balance are of equal mass. Which of the following statements is correct ?
A. Left arm is longer than the right arm
B. Both the arms are of sae length
C. Left arm is shorter than the right arm

D. Every object that is weighed using this

balance appears lighter than its actual weight.

Answer: C

D Watch Video Solution

8. The moment of inertia of a uniform cylinder of length l and radius R about its perpendicular bisector is I. What is the ratio
l / R such that the moment of inertia is minimum?
A. 1
B. $\frac{3}{\sqrt{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer: C
(Watch Video Solution
9. A cubical block of side 30 cm is moving with
velocity $2 m s^{-1}$ on a smooth horizontal
surface. The surface has a bump at a point O
as shown in figure. The angular velocity (in
$\mathrm{rad} / \mathrm{s}$) of the block immediately after it hits the bump, is :
A. 13.3
B. 5.0
C. 9.4

D. 6.7

Answer: B

D View Text Solution

10. A roller is made by joining together two cones at their vertices O . It is kept on two rails
$A B$ and $C D$, which are placed asymmetrically with its axis perpendicular to CD and its centre
O at the centre of line joining $A B$ and $C d$. It is given a light push so that it starts rolling with
its centre O moving parallel to $C D$ in the
direction shown. As it moves, the roller will tend to:
A. go straight
B. turn left and right alternately
C. turn left
D. turn right

Answer: C

11. A particle of mass 2 kg is on a smooth
horizontal table and moves in a circular path
of radius 0.6 m . The height of the table from
the ground is 0.8 m . If the angular speed of
the particle is $12 \mathrm{rads}^{-1}$, the magnitude of
its angular momentum about a point on the ground right under the centre of the circle is
A. $14.4 \mathrm{kgm}^{2} s^{-1}$
B. $8.64 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$
C. $20.16 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

D. $11.52 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

Answer: A

- Watch Video Solution

12. A uniform solid cylindrical roller of mass ' m '
is being pulled on a horizontal surface with
force F parallel to the surface and applied at its centre. If the acceleration of the cylinder is '
a^{\prime} and it is rolling without slipping, then the
value of ' F ' is : -
A. ma
B. $\frac{5}{3} \mathrm{ma}$
C. $\frac{3}{2} \mathrm{ma}$
D. 2 ma

Answer: C

D Watch Video Solution

13. Distance of the centre of mass of a solid uniform cone from its vertex is z_{0}. If the
radius of its base is R and its height is h then
z_{0} is equal to:

> A. $\frac{5 h}{8}$
> B. $\frac{3 h^{2}}{8 R}$
> C. $\frac{h^{2}}{4 R}$
> D. $\frac{3 h}{4}$

Answer: D

- Watch Video Solution

14. From a solid sphere of M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendiular to one of its faces is:
A. $\frac{4 M R^{2}}{9 \sqrt{3} \pi}$
B. $\frac{4 M R^{2}}{3 \sqrt{3} \pi}$
C. $\frac{M R^{2}}{32 \sqrt{2} \pi}$
D. $\frac{M R^{2}}{16 \sqrt{2} \pi}$

Answer: A

- Watch Video Solution

15. A ball of mass 160 g is thrown up at an angle of 60° to the horizontal at a speed of $10 \mathrm{~ms}^{-1}$. The angular momentum of the ball at the highest point of the trajectory with respect to the point from which the ball is thrown is nearly $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $1.73 \mathrm{kgm}^{2} / \mathrm{s}$
B. $3.0 \mathrm{kgm}^{2} / \mathrm{s}$
C. $3.46 \mathrm{kgm}^{2} / \mathrm{s}$

D. $6.0 \mathrm{kgm}^{2} / \mathrm{s}$

Answer: B

D Watch Video Solution

16. A bob of mass m attached to an inextensible string of length I is suspended
from a vertical support. The bob rotates in a horizontal circle with an angular speed $\omega \mathrm{red} / \mathrm{s}$ about the vertical. About the point of suspension:
A. angular momentum is conserved

B.angular momentum changes
 in

magnitude but not in direction
C. angular momentum changes in direction
but not in magnitude
D. angular momentum changes both in direction and magnitude.

Answer: C

Exercise 1 Concept Builder

1. A shell following a parabolic path explodes
somewhere in its flight. The centre of mass of
fragements will move in
A. vertical direction
B. any direction
C. horizontal direction
D. same parabolic path

- Watch Video Solution

2. Two particles of mass
m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ attract each other with a force inversely proportional to the square of the distance between them. If the particles are initially held at rest and then released, the centre of mass will
A. move towards m_{1}
B. move towards m_{2}
C. remains at rest

D. None of these

Answer: C

D View Text Solution

3. The mass per unit length of a non-uniform rod of length L is given by $\mu=\lambda \times 2$, where λ is a constant and x is distance from one end of
the rod. The distance of the center of mass of rod from this end is :-

$$
\text { A. } \frac{2}{3} L
$$

B. $\frac{3}{2} L$
C. $\frac{1}{2} L$
D. $\frac{4}{3} L$

Answer: A

D Watch Video Solution

4. A wheel rotates with a constasnt acceleration of $2.0 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}^{2}}$. If the wheel starts from rest, how many evolutions wil it make in the first 10 senconds?
A. 8
B. 16
C. 24
D. 32

Answer: B

D Watch Video Solution

5. Two bodies A and B have masses
M and m respectively where $M>m$ and
they are at a distance d apart. Equal force is
applied to each of them so that they approach
each other. The position where they hit each other is :
A. nearer to B
B. nearer to A
C. at equal distance from A and B
D. cannot be determined

Answer: B

D Watch Video Solution
6. A pulley fixed to the ceiling carries a string with blocks of mass m and $3 m$ attached to its ends. The masses of string and pulley are negligible .When the system is released, its center of mass moves with what acceleration
A. 0
B. $-g / 4$
C. $g / 2$
D. $-g / 2$

- Watch Video Solution

7. The wheel of a car is rotating at the rate of

1200 revolutions per minute. On pressing the accelerator for 10 seconds, it starts rotating at 4500 revolutions per minute. The angular acceleration of the wheel is
A. 30 radian/second ${ }^{2}$
B. 1880 degree/second ${ }^{2}$
C. 40 radian $/$ second 2
D. 1980 degree/second ${ }^{2}$

Answer: D

D Watch Video Solution

8. Three identical spheres, each of mass 1 kg are kept as shown in figure, touching each other, with their centres on a straight line. If their centres are marked
P, Q, R respectively, the distance of centre of mass of the system from P is

> A. $\frac{P Q+P R}{3}$ B. $\frac{P Q+P R}{3}$ C. $\frac{P Q+Q R}{3}$ D. $\frac{P R+Q R}{3}$

Answer: B

D View Text Solution

9. When a celling fan is switched off, its angular velocity falls to half while it makes 36
rotations. How many more rotations will it make before coming to rest ?
A. 24
B. 36
C. 18
D. 12

Answer: D
(Watch Video Solution
10. The position Vectors of two identical particles with respect to the origin in the three-dimensional coordinator system are r_{1} and r_{2} The position of the centre of mass of the system is given by

$$
\begin{aligned}
& \text { А. } \vec{x}-\vec{y} \\
& \text { В. } \frac{\vec{x}+\vec{y}}{2} \\
& \text { С. }(\vec{x}-\vec{y}) \\
& \text { D. } \frac{\vec{x}-\vec{y}}{2}
\end{aligned}
$$

11. In a bicycle the radius of rear wheel is twice the radius of front wheel. If v_{F} and v_{r} are the speeds of top most points of front and rear wheels respectively, then :
A. $v_{r}=2 v_{f}$
B. $v_{f}=2 v_{r}$
C. $v_{f}=v_{r}$
D. $v_{f}=4 v_{r}$

Answer: C

D Watch Video Solution

12. In a carbon monoxide molecule, the carbon
and the oxygen atoms are separted by a distance $1.12 \times 10^{10} \mathrm{~m}$. The distance of the centre of mass from the carbon atom is

$$
\text { A. } 0.64 \times 10^{-10} m
$$

B. $0.56 \times 10^{-10} m$
C. $0.51 \times 10^{-10} m$

$$
\text { D. } 0.48 \times 10^{-10} m
$$

Answer: A

D Watch Video Solution

13. Two paricle A and B initially at rest, move towards each other under mutual force of attraction. At the instant when the speed of A is V and the speed of B is $2 V$, the speed of the centre of mass of the system is
A. 2 v
B. v
C. 1.5 v
D. zero

Answer: D

D Watch Video Solution

14. Five masses are placed in a plane as shown
in figure. The coordinates of the centre of mass are nearest to
A. 1.2, 1.4
B. 1.3, 1.1
C. 1.1, 1.3
D. 1.0, 1.0

Answer: C

- View Text Solution

15. A small disc of radius 2 cm is cut from a disc of radius 6 cm . If the distance their centers is
3.2 cm , what is the shift in the center of mass of the disc?
A. 0.4 cm
B. 2.4 cm
C. 1.8 cm
D. 1.2 cm

Answer: A
(Watch Video Solution
16. The angular momentum of a system of particles is conserved
A. when no external force acts upon the system
B. when no external torque acts upon the
system
C. when no external impulse acts upon the
system
D. when axis of rotation remains same

Answer: B

D Watch Video Solution

17. $A B C$ is an equilateral triangle with O as its centre. \vec{F}_{1}, \vec{F}_{2} and \vec{F}_{3} represent three force acting along the sides $A B, B C$ and $A C$ respectively. If the total torque about O is zero the magnitude of \vec{F}_{3} is :
A. $F_{1}+F_{2}$
B. $F_{1}-F_{2}$
C. $\frac{F_{1}+F_{2}}{2}$
D. $2\left(F_{1}+F_{2}\right)$

Answer: A

D View Text Solution

18. A particle of mass m is moving in a plane along a circular path of radius r. Its angular momentum about the axis of rotation is L.

The centripetal force acting on the particle is.
A. $L^{2} / m r$
B. $L^{2} m / r$
C. $L^{2} / m r^{3}$
D. $L^{2} / m r^{2}$

Answer: C

D Watch Video Solution

19. A stone of mass ied to a string of lengh I
rotating along \& a circular path with constant speed v. The torque on the stone is
A. m / v
B. $m v / l$
C. $m v^{2} / l$
D. zero

Answer: B

D Watch Video Solution

20. A force of $-F \vec{k}$ acts on O , the origin of the coordinate system. The torque about the
point $(1,-1)$ is
A. $F(\hat{i}-\hat{j})$
B. $-F(\hat{i}+\hat{j})$
C. $F(\hat{i}+\hat{j})$
D. $-F(\hat{i}-\hat{j})$

Answer: C

D View Text Solution
21. A particle of mass 0.2 kg is moving in a circle of radius 1 m with $f=(2 / \pi) \mathrm{sec}^{-1}$, then its angular momentum is :

> A. $0.8 k g-m^{2} / s$
> B. $2 k g-m^{2} / s$
> C. $8 k g-m^{2} / s$
> D. $16 k g-m^{2} / s$

Answer: A

D Watch Video Solution
22. A man stands in the middle of a rotating table which has an angular velocity $\omega \mathrm{He}$ is holding two equal masses at arms lengtii ineach hand. Without moving his arms he just drops the two masses. How will be the angular speed of table get changed?
A. increase
B. decrease
C. become zero
D. remain constant

Answer: A

- Watch Video Solution

23. A wheel having moment of inertia $2 \mathrm{kgm}^{2}$ about its vertical axis, rotates at the rate of $60 r \pm$ about this axis. The torque which can stop the wheel's rotation in one minute would be

> A. $\frac{\pi}{18} N m$
> B. $\frac{2 \pi}{15} N m$
C. $\frac{\pi}{12} N m$
D. $\frac{\pi}{15} N m$

Answer: D

D Watch Video Solution

24. A smooth sphere A is moving on a frictionless horizontal plane with angular speed ω and centre of mass velocity v. It collides elastically and head on with an identical sphere B at rest. Neglect friction
everywhere. After the collision, their angular speeds are ω_{A} and ω_{B} respectively. Then

$$
\begin{aligned}
& \text { A. } \omega_{A}<\omega_{B} \\
& \text { B. } \omega_{A}=\omega_{B} \\
& \text { C. } \omega_{A}=\omega \\
& \text { D. } \omega_{B}=\omega
\end{aligned}
$$

Answer: C

D Watch Video Solution

25. A particle of mass m is moving in a circle of
radius r. The centripetal acceleration $\left(a_{c}\right)$ of
the particle varies with the time according to
the relation, $a_{c}=K t^{2}$, where K is a positive
constant and t is the time. The magnitude of
the time rate of change of angular momentum of the particle about the centre of the circle is
A. mKr
B. $\sqrt{m^{2} K r^{3}}$
C. $\sqrt{m K r}$

D. $m K r^{2}$

Answer: B

D Watch Video Solution

26. A particle of mass 2 kg is moving such that
at time t , its position, in meter, is given by
$\vec{r}(t)=5 \hat{i}-2 t^{2} \hat{j}$. The angular momentum of
the particle at $\mathrm{t}=2 \mathrm{~s}$ about the origin in kg
$m^{-2} s^{-1}$ is :

$$
\text { A. }-80 \hat{k}
$$

B. $(10 \hat{i}-16 \hat{j})$
C. $-40 \hat{k}$
D. $40 \hat{k}$

Answer: A

D Watch Video Solution

27. A bullet of mass $10 g$ and speed $500 \mathrm{~m} / \mathrm{s}$ is
fired into a door and gets embedded exactly at
the centre of the door. The door is 1.0 m wide and weight $12 k g$. It is hinged at one end and
rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it.(Hint.

The moment of inertia of the door about the vertical axis at one end is $M L^{2} / 3$)
A. $6.25 \mathrm{rad} / \mathrm{sec}$
B. $0.625 \mathrm{rad} / \mathrm{sec}$
C. $3.35 \mathrm{rad} / \mathrm{sec}$
D. $0.335 \mathrm{rad} / \mathrm{sec}$

Answer: B
28. A stone of mass m tied to the end of a string, is whirled around in a horizontal circle.
(Neglect the force due to gravity). The length of the string is reduced gradually keeping the angular momentum of the stone about the centre of the circle constant. Then, the tension in the string is given by $T=A r^{n}$ where A is a constant, r is the instantaneous radius of the circle and $n=. . .$.

$$
\text { A. }-1
$$

B. -2
C. -4
D. -3

Answer: D

D Watch Video Solution

29. A flywheel rotates about an axis. Due to
friction at the axis, it experiences an angular retardation proportional to its angular velocity. If its angular velocity falls to half while
it makes n rotations, how many more rotations will it make before coming to rest?
A. $2 n$
B. n
C. $n / 2$
D. $n / 3$

Answer: B
(Watch Video Solution
30. The curve between $\log _{e} \mathrm{~L}$ and $\log _{e} \mathrm{P}$ is (L is
the angular momentum and P is the linear momentum).
A.
B.
C.
D.

Answer: B

D Watch Video Solution
31. The angular momentum of a particle relative to a certain point O varies with time as
$M=a+b t^{2}$, where a and b are constant
vectors, with $a \perp b$. Find the force moment N
relative to the point O acting on the particle
when the angle between the vectors N and M equals 45°.
A. $\sqrt{\frac{a}{b}}$
B. $2 \sqrt{\frac{a}{b}}$
C. $2 b \sqrt{\frac{a}{b}}$
D. $2 a \sqrt{\frac{b}{a}}$

Answer: C

D Watch Video Solution

32. Moment of inertia of a disc about an axis which is tangent and parallel to its plane is I.

Then the moment of inertia of disc about a tangent, but perpendicular to its plane will be

$$
\text { A. } \frac{6}{5} I
$$

B. $\frac{3}{4} I$
C. $\frac{3}{2} I$
D. $\frac{5}{4} I$

Answer: B

D Watch Video Solution

33. A circular turn table has a block of ice placed at its centre. The system rotates with an angular speed w about an axis passing through the centre of the table. If the ice
melts on its own without any evaporation, the speed of rotation of the system
A. becomes zero
B. remains constant at the same value ω
C. increases to a value greater than ω
D. decrease to a value less than ω

Answer: D

D Watch Video Solution

34. A rod of mass m and length I is bent in to
shape of L. Its moment of inertia about the axis shown in figure
A. $\frac{m l^{2}}{6}$
B. $\frac{m l^{2}}{3}$
C. $\frac{m l^{2}}{2}$
D. None

Answer: A
35. Consider a uniform square plate of side 'a' and mass ' m '. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is
A. $\frac{5}{6} M a^{2}$
B. $\frac{1}{12} M a^{2}$
C. $\frac{7}{12} M a^{2}$
D. $\frac{2}{3} M a^{2}$

Answer: D

D Watch Video Solution

36. The angular speed of a body changes from
ω_{1} to ω_{2} without applying a torque but due to
change in its moment of inertia. The ratio of radii of gyration in the two cases is :-
A. $\omega_{1}: \omega_{2}$
B. $\sqrt{\omega_{1}}: \sqrt{\omega_{2}}$
C. $\omega_{2}: \omega_{1}$

$$
\text { D. } \sqrt{\omega_{2}}: \sqrt{\omega_{1}}
$$

Answer: D

D Watch Video Solution

37. Three particles, each of mass m gram, are situated at the vertices of an equilateral triangle $A B C$ of side 1 cm (as shown in the figure). The moment of inertia of the system about a line $A X$ perpendicular to $A B$ and in the
plane of $A B C$, in gram- $-\mathrm{cm}^{2}$ units will be
A. $\frac{3}{2} m l^{2}$
B. $\frac{3}{4} m l^{2}$
C. $2 m l^{2}$
D. $\frac{5}{4} m l^{2}$

Answer: D

D View Text Solution
38. Of the two eggs which have identical sizes,
shapes and weights, one is raw and other is
half boiled. The ratio between the moment of inertia of the raw to the half boiled egg about central axis is:
A. one
B. greater than one
C. less than one
D. not comparable

Answer: B

- Watch Video Solution

39. A billiard ball of mass m and radius r, when
hit in a horizontal direction by a cue at a
height h above its centre, acquired a linear
velocity v_{0}. The angular velocity ω_{0} acquired by the ball is
A. $\frac{5 v_{0} r^{2}}{2 h}$
B. $\frac{2 v_{0} r^{2}}{5 h}$
C. $\frac{2 v_{0} h}{5 r^{2}}$
D. $\frac{5 v_{0} h}{2 r^{2}}$

Answer: D

D Watch Video Solution

40. The moment of inertia of a disc of mass M
and radius R about an axis. Which is
tangential to sircumference of disc and
parallel to its diameter is.
A. $\frac{3}{2} M R^{2}$
B. $\frac{2}{3} M R^{2}$
C. $\frac{5}{4} M R^{2}$
D. $\frac{4}{5} M R^{2}$

Answer: C

D Watch Video Solution

41. Find the moment of inertia of a uniform square plate of mass M and edge a about one of its diagonals.
A. $I>\frac{m a^{2}}{12}$
B. $\frac{m a^{2}}{24}<I<\frac{m a^{2}}{12}$
C. $I=\frac{m a^{2}}{24}$
D. $I=\frac{m a^{2}}{12}$

Answer: D

D Watch Video Solution

42. Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis perpendicular to its
plane and passing through a point on its rim will be.
A. 51
B. 31
C. 61
D. 41

Answer: C
(Watch Video Solution
43. A circular disc X of radius R is made from
an iron plate of thickness t, and another disc Y
of radius $4 R$ is made from an iron plate of
thickness $\frac{t}{4}$. Then the relation between the moment of inerita I_{X} and I_{Y} is

$$
\text { A. } I_{Y}=32 I_{X}
$$

B. $I_{Y}=16 I_{X}$
C. $I_{Y}=I_{X}$

$$
\text { D. } I_{Y}=64 I_{X}
$$

- Watch Video Solution

44. Point masses $1,2,3$ and 4 kg are lying at the
point $\quad(0,0,0),(2,0,0),(0,3,0) \quad$ and
$(-2,-2,0)$ respectively. The moment of inertia of this system about x-axis will be
A. $43 \mathrm{kgm}^{2}$
B. $34 \mathrm{kgm}^{2}$
C. $27 \mathrm{kgm}^{2}$
D. $72 \mathrm{kgm}^{2}$

Answer: A

D Watch Video Solution

45. For the given uniform square lamina $A B C D$,
whose centre is O ,
A. $I_{A C}=\sqrt{2} I_{E F}$
B. $\sqrt{2} I_{A C}=I_{E F}$
C. $I_{A D}=3 I_{E F}$
D. $I_{A C}=I_{E F}$

Answer: D

D View Text Solution

46. Initial angular velocity of a circular disc of mass M is ω_{1}. Then two small spheres of mass m are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc-
A. $\left(\frac{M+m}{M}\right) \omega_{1}$
B. $\left(\frac{M+m}{m}\right) \omega_{1}$
C. $\left(\frac{M}{M+4 m}\right) \omega_{1}$
D. $\left(\frac{M}{M+2 m}\right) \omega_{1}$

Answer: C

D Watch Video Solution

47. A loop rolls down on an inclined plane. The fraction of its kinetic energy that is associated with only the rotational motion is.
A. $1: 2$
B. 1:3
C. 1:4
D. 2:3

Answer: A

- Watch Video Solution

48. A rod $P Q$ of length L revolves in a horizontal plane about the axis YY^{\prime}. The angular velocity of the rod is w . If A is the area
of cross-section of the rod and ρ be its density,
its rotational kinetic energy is

$$
\begin{aligned}
& \text { A. } \frac{1}{3} A L^{3} \rho \omega^{2} \\
& \text { B. } \frac{1}{2} A L^{3} \rho \omega^{2} \\
& \text { C. } \frac{1}{24} A L^{3} \rho \omega^{2} \\
& \text { D. } \frac{1}{18} A L^{3} \rho \omega^{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

49. A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is k. If radius of the ball be R, then the fraction of total energy associated with its rotation will be.

$$
\begin{aligned}
& \text { A. } \frac{K^{2}}{R^{2}} \\
& \text { B. } \frac{K^{2}}{K^{2}+R^{2}} \\
& \text { C. } \frac{R^{2}}{K^{2}+R^{2}} \\
& \text { D. } \frac{K^{2}+R^{2}}{R^{2}}
\end{aligned}
$$

- Watch Video Solution

50. A solid sphere rolls on a smooth horizontal surface at $10 \mathrm{~m} / \mathrm{s}$ and then rolls up a smooth inclined plane of inclination 30° with horizontal. The mass of the sphere is 2 kg . Find the height attained by the sphere before it stops (in m).
A. 700 cm
B. 701 cm
C. 7.1 m

D. None of these

Answer: C

D Watch Video Solution

51. A solid cylinder of mass m \& radius R rolls down inclined plane without slipping. The speed of its C.M. when it reaches the bottom is
A. $\sqrt{2 g h}$
B. $\sqrt{4 g h / 3}$
C. $\sqrt{3 / 4 g h}$
D. $\sqrt{4 g h}$

Answer: D

D View Text Solution

52. The least coefficient of friction for an inclined plane inclined at angle α with horizontal in order that a solid cylinder will roll down without slipping is
A. $\frac{2}{3} \tan \alpha$
B. $\frac{2}{7} \tan \alpha$
C. $\tan \alpha$
D. $\frac{5}{7} \tan \alpha$

Answer: C

D Watch Video Solution
53. A tangential force of 20 N is applied on a
cylinder of mass 4 kg and moment of inertia
$0.02 \mathrm{kgm}^{2}$ about its own axis. If the cylinder
rolls without slipping, then linear acceleration of its centre of mass will be
A. $6.7 m / s^{2}$
B. $10 m / s^{2}$
C. $3.3 m / s^{2}$
D. None of these

Answer: A

D View Text Solution
54. A body of moment of inertia about its axis of rotation is $3 \mathrm{kgm}^{2}$ and angular velocity 3 $\mathrm{rad} / \mathrm{s}$. The kinetic energy of rotating body is same as that of body of mass 27 kg moving with a speed of
A. $1.0 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $1.5 \mathrm{~m} / \mathrm{s}$
D. $2.0 \mathrm{~m} / \mathrm{s}$
55. A toy car rolls down the inclined plane as
shown in the fig. It loops at the bottom. What
is the relation between H and h ?

$$
\begin{aligned}
& \text { A. } \frac{H}{h}=2 \\
& \text { B. } \frac{H}{h}=3 \\
& \text { C. } \frac{H}{h}=4 \\
& \text { D. } \frac{H}{h}=5
\end{aligned}
$$

Answer: D

D View Text Solution

56. The moment of inertia of the body about an axis is 1.2 kg m . Initially the body is at rest.

In order to produce a rotational kinetic energy
of 1500 J, an angualr acceleration of $25 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}^{2}}$
must be applied about the axis for the duration of
A. 4 seconds
B. 2 seconds
C. 8 seconds
D. 10 seconds

Answer: B

D Watch Video Solution

57. A uniform rod of length I is free to rotate in
a vertical plane about a fixed horizontal axis
through 0 . The rod begins rotating from rest
from its unstable equilibrium position. When
it has turned through an angle θ, its angular velocity ω is given as
A. $\sqrt{\frac{6 g}{l}} \sin \theta$
B. $\sqrt{\frac{6 g}{l}} \sin \cdot \frac{\theta}{2}$
C. $\sqrt{\frac{6 g}{l}} \cos \cdot \frac{\theta}{2}$
D. $\sqrt{\frac{6 g}{l}} \cos \theta$

Answer: C

D View Text Solution
58. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal and fixed and moment of inertia about it is I. A weight $m g$ is attached to the end of the cord and falls from rest. After falling through a distance h, the angular velocity of the wheel will be.
A. $\sqrt{\frac{2 g h}{I+m r}}$
B. $\left[\frac{2 m g h}{I+m r^{2}}\right]^{1 / 2}$
C. $\left[\frac{2 m g h}{I+2 m r^{2}}\right]^{1 / 2}$
D. $\sqrt{2 g h}$

Answer: B

- Watch Video Solution

Exercise 2 Concept Applicator

1. Consider a two particle system with particles
having masses m_{1} and m_{2} if the first particle
is pushed towards the centre of mass through
a distance d, by what distance should the second particle is moved, so as to keep the center of mass at the same position?

> A. $\frac{m_{2}}{m_{1}} d$
> B. $\frac{m_{1}}{m_{1}+m_{2}} d$
> C. $\frac{m_{1}}{m_{2}} d$
> D. d

Answer: C

D Watch Video Solution

2. A ring of mass M and radius R is rotating about its axis with angular velocity ω. Two identical bodies each of mass m are now
gently attached at the two ends of a diameter of the ring. Because of this, the kinetic energy

loss will be :

$$
\begin{aligned}
& \text { A. } \frac{m(M+2 m)}{M} \omega^{2} R^{2} \\
& \text { B. } \frac{M m}{(M+m)} \omega^{2} R^{2} \\
& \text { C. } \frac{M m}{(M+2 m)} \omega^{2} R^{2} \\
& \text { D. } \frac{(M+m) M}{(M+2 m)} \omega^{2} R^{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

3. A weightless ladder 20 ft long rests against
a frictionless wall at an angle of 60° from the
horizontal. A 150 pound man is 4 ft from the top of the ladder. A horizontal force is needed to keep it from slipping. Choose the correct magnitude from the following.
A. 175 1b
B. 100 1b
C. 120 1b
D. 17.3 1b

Answer: D

D Watch Video Solution

4. A thick walled hollow sphere has outer radius R. It rolls down an inclined plane without slipping and its -speed at the bottom is v. If the inclined plane is frictionless and the sphere slides down without rolling, its speed at the bottom $5 v / 4$. What is the radius of gyration of the sphere?
A. $3 R_{0} / 2$
B. $3 R_{0} / 4$
C. $9 R_{0} / 16$
D. $3 R_{0}$

Answer: B

D Watch Video Solution

5. A child is standing with folded hands at the center of a platform rotating about its central axis. The kinetic energy of the system is K. The
child now stretches his arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is
A. 2 K
B. $\frac{K}{2}$
C. $\frac{K}{4}$
D. 4 K

Answer: B

D Watch Video Solution
6. A uniform thin rod $A B$ of length L has linear mass density $\mu(x)=a+\frac{b x}{L}$, where x is measured from A. If the $C M$ of the rod lies at a distance of $\left(\frac{7}{12} L\right)$ from A , then a and b are related as:
A. $a=2 b$
B. $2 a=b$
C. $a=b$
D. $3 a=2 b$

- Watch Video Solution

7. Acertain bicycle can go up a gentle incline with constant speed when the frictional force of ground pushing the rear wheel is $F_{2}=4 N$. With what force F_{1} must the chain pull on the sprocket wheel if $R_{1}=5 \mathrm{~cm}$ and $R_{2}=30 \mathrm{~cm}$?
A. 4 N
B. 24 N

C. 140N

$$
\text { D. } \frac{35}{4} N
$$

Answer: B

D View Text Solution

8. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of
projection when the particle is at its maximum height h is.
A. $m \sqrt{2 g h^{3}}$
B. $\frac{m v^{3}}{\sqrt{2 g}}$
C. $\frac{m v^{3}}{4 \sqrt{2 g}}$
D. zero

Answer: C

D Watch Video Solution

9. A thin bar of length L has a mass per unit length λ, that increases linerarly with distance
from one end. If its total mass is M and its mass per unit length at the lighter end is λ_{0},
then the distance of the centre of mass from
the lighter end is
A. $\frac{L}{2}-\frac{\lambda_{\circ} L^{2}}{4 M}$
B. $\frac{L}{3}+\frac{\lambda_{\circ} L^{2}}{8 M}$
c. $\frac{L}{3}+\frac{\lambda_{\circ} L^{2}}{4 M}$
D. $\frac{2 L}{3}-\frac{\lambda_{\circ} L^{2}}{6 M}$

Answer: C

- Watch Video Solution

10. Two particles A and B of mass m each and moving with velocity v , hit the ends of a rigid bar of the same mass m and length I simultaneously and stick to the bar as shown
in the figure. The bar is kept on a smooth
horizontal plane. The linear and angular speed
of the system (bar + particle) after the

collision are

$$
\begin{aligned}
& \text { A. } v_{c m}=0, \omega=\frac{12}{7} \frac{v}{l} \\
& \text { B. } v_{c m}=0, \omega=\frac{4 v}{l} \\
& \text { C. } v_{c m}=0, \omega=\frac{5 v}{l} \\
& \text { D. } v_{c m}=0, \omega=\frac{v}{5 l}
\end{aligned}
$$

Answer: A

D View Text Solution

11. Two fly wheels A and B are mounted side by
side with frictionless bearings on a common
shaft. Their moments of inertia about the shaft are $5.0 \mathrm{kgm}^{2}$ and $20.0 \mathrm{kgm}^{2}$ respectively.

Wheel A is made to rotate at 10 revolution per
second. Wheel B, initially stationary, is now coupled to A with the help of a clutch. The rotation speed of the wheels will become
A. $2 \sqrt{5} \mathrm{rps}$
B. 0.5 rps
C. 2 rps

D. None of these

Answer: C

- Watch Video Solution

12. A thin circular ring of mass m and radius R is rotating about its axis with a constant angular velocity ω. Two objects each of mass
M are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with an angular velocity $\omega^{\prime}=$
A. $\frac{\omega(m+2 M)}{m}$
B. $\frac{\omega(m-2 M)}{(m+2 M)}$
C. $\frac{\omega m}{(m+M)}$
D. $\frac{\omega m}{(m+2 M)}$

Answer: D

D Watch Video Solution

13. A thin rod of length L is lying along the x axis with its ends at $x=0$ and $x=L$. Its linear density (mass/length) varies with x as $k\left(\frac{x}{L}\right)^{n}$
where n can be zero or any positive number. If
the position $X_{C M}$ of the centre of mass of the rod is plotted against n, which of the following graphs best approximates the dependence of $X_{C M}$ on n ?
A.
B.
C.
D.

Answer: A
14. A metre stick of length 1 m is held vertically with one end in contact of the floor and is then allowed to fall. If the end touching the floor is now allowed to slip, the other end will hit the ground with a velocity of $\left(g=9.8 m / s^{2}\right)$
A. $3.2 m / s$
B. $5.4 m / s$
C. $7.6 m / s$
D. $9.2 m / s$

Answer: B

D View Text Solution

15. A rectangular piece of dimension $l \times b$ is
cut out of central portion of a uniform circular
disc of mass m and radius r. The moment of inertia of the remaining piece about an axis
perpendicular to the plane of the disc and passing through its centre is :
A. $m\left[r^{2}-\frac{l b}{6 \pi r^{2}}\left(l^{2}+b^{2}\right)\right.$
B. $\frac{m}{2}\left[r^{2}-\frac{l b}{6 \pi r^{2}}\left(l^{2}+b^{2}\right)\right]$
C. $\frac{m}{2}\left[r^{2}-\frac{\left(l^{2}+b^{2}\right)}{6}\right]$
D. not determinable as mass of the rectangular piece is not given

Answer: B

D Watch Video Solution

16. A pulley is in the form of a disc of mass M and radius R. In following figure two masses
M_{1} and M_{2} are connected by a light inextensible string which passes over the pulley. Assuming that the string does not slip over the pulley, the angular momentum of system at the instant shown, about axis of rotation of pulley is
$\left[M_{2}+M_{1}+\frac{1}{k} M\right] v R$ then find the value of k.
A. 1
B. 2
C. 4
D. 5

Answer: B

D View Text Solution

17. From a circular ring of mass M and radius R, an arc corresponding to a 90° sector is removed. The moment of inertia of the
remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is k times $M R^{2}$. Then the value of k is
A. $3 / 4$
B. $7 / 8$
C. $1 / 4$
D. 1

Answer: A
18. Fig shows three particles A, B and C on the
x-axis. They are given velocities of
$v_{1}=3 m / s, v_{2}=2 m / s$ and $v_{3}=5 m / s$
respectively in the directions shown.

The position of centre of mass A, B and C at
time $t=1 \mathrm{~s}$ will be

$$
\begin{aligned}
& \text { А. } x=11 \frac{2}{3} m \\
& \text { В. } x=15 \frac{1}{3} m \\
& \text { С. } x=10 \frac{1}{3} m
\end{aligned}
$$

$$
\text { D. } x=10 \frac{2}{3} m
$$

Answer: C

D View Text Solution

19. A hollow sphere of mass 2 kg is kept on a rough horizontal surface. A force on 10 N is applied at the centre of the sphere as shown in the figure.

The minimum value of μ so that the sphere
starts pure rolling is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $\sqrt{3} \times 0.16$
B. $\sqrt{3} \times 0.08$
C. $\sqrt{3} \times 0.1$
D. None of these

Answer: B

D View Text Solution
20. Moment of inertia of a uniform-disc of mass m about an axis $x=a$ is $m k^{2}$, where k is
the radius of gyration. What is its moment of inertia about an axis $x=a+b$:
A. $m k^{2}+m(a+b)^{2}-m a^{2}$
B. $m k^{2}+m \frac{(a+b)^{2}}{2}$
C. $m k^{2}+m \frac{b^{2}}{2}$
D. $m k^{2}+m b^{2}$

Answer: A
21. A circular disc of radius R is removed from a bigger circular disc of radius 2 R such that the cirucmferences of the discs coincide. The centre of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc. The value of α is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. $1 / 6$

Answer: B

- Watch Video Solution

22. Moment of inertia of an equilateral triangular lamina $A B C$, about the axis passing through its centre O and perpendicular to its plane is I_{\circ} as shown in the figure. A cavity DEF
is cut out from the lamina, where D, E, F are the mid points of the sides. Moment of inertia of the remaining part of lamina about the
same axis is :

> A. $\frac{7}{8} I_{\circ}$
> B. $\frac{15}{16} I_{\circ}$
> C. $\frac{3 I_{\circ}}{4}$
> D. $\frac{31 I_{\circ}}{32}$

Answer: B

D View Text Solution

23. A thin uniform rod of length l and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its centre of mass rises to a maximum height of -
A. $\frac{1}{6} \frac{l \omega}{g}$
B. $\frac{1}{2} \frac{l^{2} \omega^{2}}{g}$
C. $\frac{1}{6} \frac{l^{2} \omega^{2}}{g}$
D. $\frac{1}{3} \frac{l^{2} \omega^{2}}{g}$

Answer: C

- Watch Video Solution

24. A large disc has mass 2 kg and radius 0.2 m and initial angular velocity $50 \mathrm{rad} / \mathrm{s}$ and small disc has mass 4 kg and radius 0.1 m and initial angular velocity $200 \mathrm{rad} / \mathrm{s}$ both rotating about
their common axis. Then the common final angular velocity after discs are in contact is,
A. 40
B. 60
C. 100

D. 120

Answer: C

D Watch Video Solution

25. The spool shown in figure is placed on a rough surface has inner radius r and outer radius R. The angle θ between the applied force and the horizontal can be varied. The critical angle (θ) for which the spool does not

> A. $\sin \theta=\frac{r}{R}$
> B. $\cos \theta=\frac{r}{R}$
> C. $\cos \theta=\sqrt{\frac{r}{R}}$
> D. $\cos \theta=\frac{2 r}{R}$

Answer: B

D View Text Solution
26. Two masses m_{1} and m_{2} are connected by
a massless spring of spring constant k and
unstretched length I. The masses are placed on a frictionless straight channel, which are consider our x-axis. They are initially at $x=0$ and $x=l$ respectively. At $\mathrm{t}=0, \mathrm{a}$ velocity v_{0} is suddenly imparted to the first particle. At a later time t, the centre of mass of the two masses is at :

$$
\text { A. } x=\frac{m_{2} l}{m_{1}+m_{2}}
$$

$$
\begin{aligned}
& \text { B. } x=\frac{m_{1} l}{m_{1}+m_{2}}+\frac{m_{2} v_{0} t}{m_{1}+m_{2}} \\
& \text { C. } x=\frac{m_{2} l}{m_{1}+m_{1}}+\frac{m_{2}-v_{0} t}{m_{1}+m_{2}} \\
& \text { D. } x=\frac{m_{2} l}{m_{1}+m_{2}}+\frac{m_{1} v_{0} t}{m_{1}+m_{2}}
\end{aligned}
$$

Answer: D

D View Text Solution

27. Cement, sand and seree are dropped in rotating cylidrical drum to make concrete mixture. If rotating speed of drum is very high then contents are attached to wall of drum
and mixture is not formed correctly. If radius
of drum is 1.25 m and its axis is horizontal, then the required maximum rotating speed to make good mixture in rpm is -
A. 27.0
B. 0.4
C. 1.3
D. 8.0

Answer: A

28. A tennis ball (treated as hollow spherical shell) starting from O rolls down a hill. At point A the ball becomes air borne leaving at an angle of 30° with the horizontal. The ball strickes the ground at B. What is the value of the distance $A B$?
(Moment of inertia of a spherical shell of mass m and radius R about its diameter $=\frac{2}{3} m R^{2}$)
A. $1.87 m$
B. 2.08 m
C. $1.57 m$
D. $1.77 m$

Answer: B

D View Text Solution

