©゙" doubtnut

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

WAVES

Jee Main 5 Years At A Glance

1. The end correction of a resonance column is 1 cm . If the
shortest length resonating with the tunning fork is 10
cm , the next resonating length should be :
A. 32 cm
B. 40 cm
C. 28 cm
D. 36 cm

Answer: A

- Watch Video Solution

2. 5 beats / second are heared when a tuning fork is sounded with a sonometer wire under tension when the length of the sonometer wire is either 0.95 m or 1 The frequency of the fork will be :
A. 195 Hz
B. 251 Hz
C. 150 Hz
D. 300 Hz

Answer: A

D Watch Video Solution

3. A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and its Young's modulus is 9.27×10^{10} Pa. What will be the fundamental frequency of the longitudinal vibrations?
A. 5 kHz
B. 2.5 kHz
C. 10 kHz
D. 7.5 kHz

Answer: A

D Watch Video Solution

4. A standing wave is formed by the superposition of two
waves travelling in opposite directions. The transverse displacement is given by
$y(x, t)=0.5 \sin \left(5 \frac{\pi}{4} x\right) \cos (200 \pi t)$ What is the speed of
the travelling wave moving in the position x direction?
A. $160 m / s$
B. $90 \mathrm{~m} / \mathrm{s}$
C. $180 \mathrm{~m} / \mathrm{s}$
D. $120 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

5. A toy-car, blowing its horn, is moving with a steady speed of $5 \mathrm{~m} / / \mathrm{s}$, away from a wall. An observer, towards
whom the toy car is moving, is able to heat 5 beats per
second. If the velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$, the frequency of the horn of the toy car is close to :
A. 680 Hz
B. 510 Hz
C. 340 Hz
D. 170 Hz

Answer: D

- Watch Video Solution

6. A pipe open at both ends has a fundamental frequency f in air. The pipe is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now :
A. $2 f$
B. f
C. $\frac{f}{2}$
D. $\frac{3 f}{4}$

Answer: B

- Watch Video Solution

7. A bat moving at $10 \mathrm{~ms}^{-1}$ towards a wall sends a sound signal of 8000 Hz towards it. On reflection it hears a sound of frequency f. The value of g in Hz is close to (speed to sound $=320 m s^{-1}$) :-
A. 8516
B. 8258
C. 8424
D. 8000

Answer: A

D Watch Video Solution

8. A train is moving on a straight track with speed
$20 \mathrm{~ms}^{-1}$. It is blowing its whistle at the frequency of

1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound $=320 m s^{-1}$) close to:
A. 0.18
B. 0.24
C. 0.06
D. 0.12

Answer: D

- Watch Video Solution

9. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to the other at a speed of 2 m / s. The velocity of sound is $320 \mathrm{~m} / \mathrm{s}$. The number of beats heard by the person is 1 s will be
A. 2
B. 4
C. 8
D. 10

Answer: D

D Watch Video Solution

10. A pipe of length 85 cm is closed one end. Find the number of possible natural oscillationsof air column in the pipe whose frequencies lie below 1250 Hz . The velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
A. 12
B. 8
C. 6
D. 4

Answer: C

- Watch Video Solution

Exercise 1 Concept Builder

1. The equation $y=A \sin ^{2}(k x-\omega t)$ represents a wave with
A. amplitude A, frequency $\omega / 2 \pi$
B. amplitude $A / 2$, frequency of $\frac{\omega}{\pi}$
C. amplitude 2A, frequency $\omega / 4 \pi$
D. it does not represent a wave motion

Answer: B

- Watch Video Solution

2. Sound waves are propagating in a medium. The moduli of isothermal and adiabatic elasticity of the medium are
E_{r} and E_{s} respectively. The velocity of sound waves is proportional to -
A. E
B. \sqrt{E}
C. $\sqrt{E^{\prime}}$
D. $\frac{E}{E}$,

Answer: B

- Watch Video Solution

3. The equation of plane progressive wave motion is
$y=a \frac{\sin (2 \pi)}{\lambda}(v t-x)$. Velocity of the particle is
A. $y \frac{d v}{d x}$
B. $v \frac{d y}{d x}$
C. $-y \frac{d v}{d x}$
D. $-v \frac{d y}{d x}$

Answer: B

- View Text Solution

4. Three transverse waves are represented by
$y_{1}=A \cos (k x-\omega t)$
$y_{2}=A \cos (k x+\omega t)$
$y_{3}=A \cos (k y-\omega t)$

The combination of waves which can produce stationary
waves is
A. y_{1} and y_{2}
B. y_{2} and y_{3}
C. y_{1} and y_{3}
D. y_{1}, y_{2} and y_{3}

Answer: A

- Watch Video Solution

5. The equation $Y=0.02 \sin (500 \pi t) \cos (4.5 x)$ represents
A. progressive wave of frequency 250 Hz along x -axis
B. a stationary wave of wavelength of 1.4 m
C. a transverse progressive wave of amplitude 0.02 m
D. progressive wave of speed of about $350 \mathrm{~ms}^{-1}$

D Watch Video Solution

6. The equation $y=a \sin 2 \pi / \lambda(v t-x)$ is expression for
A. stationary wave of single frequency along x-axis
B. a simple harmonic motion
C. a progressive wave of single frequency along x-axis
D. the resultant of two SHMs of slightly different frequencies
7. The velocity of sound in hydrogen is $1224 m / s$. Its velocity in a mixture of hydrogen and oxygen containing 4 parts by volume of hydrogen and 1 part oxygen is
A. $1224 m / s$
B. $612 m / s$
C. $2448 m / s$
D. $306 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

8. Sound waves of length λ travelling with velocity v in a medium enter into another medium in which their velocity is 4 v . The wavelength in 2 nd medium is:
A. 4λ
B. λ
C. $\lambda / 4$
D. 16λ

Answer: A

- Watch Video Solution

9. When a sound wave of frequency 300 Hz passes through a medium the maximum displacement of a particle of the medium is 0.1 cm . The maximum velocity of the particle is equal to
A. $60 \pi \mathrm{cms}^{-1}$
B. $30 \pi \mathrm{cms}^{-1}$
C. $30 \mathrm{cms}^{-1}$
D. $60 \mathrm{cms}^{-1}$

Answer: A
10. A point source emits sound equally in all directions in a non-absorbing medium. Two point P and Q are at distance of $2 m$ and $3 m$ respectively from the source. The ratio of the intensities of the wave at P and Q is:
A. $3: 2$
B. $2: 3$
C. 9: 4
D. $4: 9$

Answer: C
11. A wave travelling in the + ve x-direction having displacement along y -direction as 1 m , wavelength $2 \pi \mathrm{~m}$ and frequency of $1 / \pi \mathrm{Hz}$ is represented by
A. $y=\sin (2 \pi x-2 \pi t)$
B. $y=\sin (10 \pi x-20 \pi t)$
C. $y=\sin (2 \pi x+2 \pi t)$
D. $y=\sin (x-2 t)$

Answer: D

- Watch Video Solution

12. For the stationary wave $y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$, the distance between a node and the next antinode is
A. 7.5 units
B. 1.5 units
C. 22.5 units
D. 30 units

Answer: A

D Watch Video Solution

13. The velocity of sound in a container of air at $-73^{\circ} \mathrm{C}$
is $300 \mathrm{~m} / \mathrm{s}$ It temp. of container were raised to $127^{\circ} \mathrm{C}$
what would be the velocity of sound?
A. $300 \mathrm{~m} / \mathrm{s}$
B. $300 \sqrt{2} m / s$
C. $300 / \sqrt{2} m / s$
D. $600 \mathrm{~m} / \mathrm{s}$

Answer: b

- Watch Video Solution

14. At room temperature the ratio of velocity of sound in air at 10 atmospheric pressure to the at 1 atmospheric pressure will be
A. 10: 1
B. 1: 10
C. $1: 1$
D. cannot say

Answer: C

D Watch Video Solution

15. यांत्रिक तरंगें NTP पर वायु में ध्वनि की चाल 332 मीटर है। NTP पर हाइड्रोजन में ध्वनि की चाल क्या होगी? (वायु हाइड्रोजन से 16 गुना भारी है)
A. 330
B. 1200
C. 600
D. 900

Answer: B

- Watch Video Solution

16. A uniform wire of length 20 m and weighing 5 kg hangs vertically. If $g=10 m s^{-2}$, then the speed of transverse waves in the middle of the wire is
A. $10 m / s$
B. $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $4 m / s$
D. zero

Answer: A

- Watch Video Solution

17. A circular loop of rope of length L rotates with uniform angular velocity ω about an axis through its centre on a horizontal smooth platform. Velocity of pulse produced due to slight radial displacement is given by
A. ωL
B. $\frac{\omega L}{2 \pi}$
C. $\frac{\omega L}{\pi}$
D. $\frac{\omega L}{4 \pi^{2}}$

Answer: B

- View Text Solution

18. A longitudinal wave is represented by
$x=x_{0} \sin 2 \pi\left(\mathrm{nt}-\frac{\mathrm{x}}{\lambda}\right)$
The maximum particle velocity will be four times the wave velocity if
A. $\lambda=\frac{\pi x_{0}}{4}$
B. $\lambda=2 \pi x_{0}$
C. $\lambda=\frac{\pi x_{0}}{2}$
D. $\lambda=4 \pi x_{0}$

Answer: C

- Watch Video Solution

19. Two waves represented by
$y_{1}=a \sin \omega t$ and $y_{2}=a \sin (\omega t+\phi)$ with $\phi=\frac{\pi}{2}$
are superposed at any point at a particular instant. The resultant amplitude is
A. a
B. 4 a
C. $\sqrt{2} a$
D. zero

Answer: C

- Watch Video Solution

20. The distance between two consecutive crests in a wave train produced in string is 5 m . If two complete waves pass through any point per second, the velocity of wave is :-
A. $2.5 \mathrm{~m} / \mathrm{s}$
B. $5.0 \mathrm{~m} / \mathrm{s}$
C. $8.0 \mathrm{~m} / \mathrm{s}$
D. $10.0 \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

21. A closed organ pipe has a frequency ' n '. If its length
is doubled and radius is halved, its frequency nearly becomes.
A. $n / 2$
B. $n / 3$
C. n
D. 2 n

Answer: A

- Watch Video Solution

22. An open and closed organ pipe have the same length the ratio pth mode of frequency of vibration of air in two pipe is
A. 1
B. p
C. $p(2 p+1)$
D. $\frac{2 p}{(2 p-1)}$

- Watch Video Solution

23. The extension in a string obeying Hooke's law is x. The speed of sound in the stretched string is v. If the extension in the string is increased to $1.5 x$, the speed of sound will be
A. 1.22 v
B. 0.61 v
C. 1.50 v
D. 0.75 v

Answer: A

- Watch Video Solution

24. In a stationary wave that forms as a result of reflection of wave from an obstacle, the ratio of this amplitude at an antinode to the amplitude at node is n.

The fraction of energy reflected is
A. $\left[\frac{x-1}{x}\right]^{2}$
B. $\left[\frac{x}{x+1}\right]^{2}$
C. $\left[\frac{x-1}{x+1}\right]^{2}$
D. $\left[\frac{1}{x}\right]^{2}$

Answer: C

D Watch Video Solution

25. 60 सेमी लम्बाई के तने हुए तार के कम्पन की मूल आवृत्ति 256 हर्ट्ज

है। यदि तार की लम्बाई 15 सेमी हो जाए परन्तु तनाव वही रहे तो मूल आवृत्ति हो जायेगी -
A. 1024
B. 572
C. 256
D. 64

Answer: A
26. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz . There are no other resonant frequencies between these two. Then, the lowest resonant frequency for this string is
A. 105 Hz
B. 1.05 Hz
C. 1050 Hz
D. 10.5 Hz

Answer: A
27. The fundamental frequency of an open organ pipe is

300 Hz . The first overtone of this has same frequency as that of first overtone of a closed organ pipe. If speed of sound is $330 \mathrm{~m} / \mathrm{s}$, then the length of closed of organ pipe will be
A. 41 cm
B. 37 cm
C. 31 cm
D. 80 cm

Answer: A
28. Two wires are kept tight between the same pair of supports. The tensions in the wires are in the ratio $2: 1$, the radii are in the ratio $3: 1$ and the densities are in the ratio 1 : 2. Find the ratio of their fundamental frequencies.
A. 1:2
B. 2:3
C. 3:4
D. $4: 3$

Answer: B
29. In the sonometer experiment, a tuning fork of frequency 256 Hz is in resonance with $0.4 m$ length of the wire when the iron load attached to free end of wire is
$2 k g$. If the load is immersed in water, the length of the wire in resonance would be (specific gravity of iron $=8$)
A. 0.37 m
B. 0.43 m
C. 0.31 m
D. 0.2 m

Answer: A

30. A wave in a string has an amplitude of 2 cm . The wave travels in the $+v e$ direction of x axis with a speed of 1 $28 \mathrm{~ms}^{-1}$ and it is noted that 5 complete waves fit in $4 m$ length of the string. The equation describing the wave is

$$
\begin{aligned}
& \text { A. } y=(0.02) m \sin (15.7 x+2010 t) \\
& \text { B. } y=(0.02) m \sin (15.7 x+2010 t) \\
& \text { C. } y=(0.02) m \sin (7.85 x+1005 t) \\
& \text { D. } y=(0.02) m \sin (7.85 x+1005 t)
\end{aligned}
$$

Answer: C

31. An organ pipe P_{1} closed at one end vibrating in its first harmonic and another pipe P_{2} open at both ends vibrating in its third harmonic are in resonance with a given tuning fork. The ratio of the length of P_{1} to that of P_{2} is-
A. $\frac{8}{3}$
B. $\frac{1}{6}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

32. A sonometer wire of length I vibrates in fundamental mode when excited by a tunning fork of frequency 416 Hz . If the length is double keeping other things same the string will
A. vibrating with a frequency of 416 Hz
B. vibrate with a frequency of 208 Hz
C. vibrate with a frequency of 832 Hz
D. stop vibrating

Answer: A

- Watch Video Solution

33. Two strings A and B made of same material are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed v_{A} and on B with speed v_{B}. The ratio $\frac{v_{A}}{v_{B}}$ is
A. $1 / 2$
B. 2
C. $1 / 4$
D. 4

Answer: A
34. Where should the two bridges be set in a 110 cm long wire so that it is divided into three parts and the ratio of the frequencies are $3: 2: 1$?
A. 20 cm from one end and 60 cm from other end
B. 30 cm from one end and 70 cm from other end
C. 10 cm from one end and 50 cm from other end
D. 50 cm from one end and 40 cm from other end

Answer: A

D Watch Video Solution

35. If there are six loops for 1 m length in transverse mode of Melde's experiment, the number of loops in longitudinal mode under the indentical conditions would be
A. 3
B. 6
C. 12
D. 8

Answer: A
36. A cylinderical tube open at both ends, has a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of air column is now
A. $n / 2$
B. n
C. $2 n$
D. 4 n

Answer: B
37. A fork of frequency 256 Hz resonates with a closed organ pipe of length 25.4 cm . If the length of the pipe is increased by 2 mm then the number of beat/s will be
A. 4
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

38. In a resonance column, first and second resonance are obtained at depths 22.7 cm and 70.2 cm . The third resonance will be obtained at a depth
A. 117.7 cm
B. 92.9 cm
C. 115.5 cm
D. 113.5 cm

Answer: A

- Watch Video Solution

39. Vibrations are produced in a vertical tube of length 150 cm closed at one end by a tuning fork of frequency

340 Hz . Now water is filled slowly in the tube. IF the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ then the minimum height of water required for resonance is:
A. 90 cm
B. 75 cm
C. 50 cm
D. 25 cm

Answer: D

40. A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tunig fork of frequency 416 Hz . The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to
A. 1 kg
B. 2 kg
C. 4 kg
D. 16 kg

Answer: D

- Watch Video Solution

41. Three sound sources p, q and r have frequencies 400
$\mathrm{Hz}, 401 \mathrm{~Hz}$ and 402 Hz respectively. Calculate the number of beats nodes per second.
A. 0
B. 1
C. 3
D. 2

Answer: B

- Watch Video Solution

42. Three waves of equal frequency having amplitudes
$10 \mu m, 4 \mu m, 7 \mu m$ arrive at a given point with successive phase difference of $\pi / 2$, the amplitude of the resulting wave in μm is given by
A. 7
B. 6
C. 5
D. 4

Answer: C
43. Two travelling waves $y_{1}=A \sin [k(x-c t)]$ and $y_{2}=A \sin [k(x+c t)]$ are superimposed on string. The distance between adjacent nodes is
A. $c t / \pi$
B. $c t / 2 \pi$
C. $\pi / 2 k$
D. π / k

Answer: D

- Watch Video Solution

44. Two waves having the intensities in the ratio of $9: 1$ produce interference. The ratio of maximum to minimum intensity is equal to
A. $2: 1$
B. $4: 1$
C. $9: 1$
D. $10: 8$

Answer: B

D Watch Video Solution

45. Ten tuning forks are arranged in increasing order of frequency is such a way that any two nearest tuning forks produce $4 b e * / \mathrm{sec}$. The highest freqeuncy is twice of the lowest. Possible highest and the lowest frequencies are
A. 80 and 40
B. 100 and 50
C. 44 and 22
D. 72 and 36

Answer: D

46. Forty - one forks are so arranged that each products $5 b e a t / s$ when sounded with its near fork. If the frequency of last fork is double the frequency of first and last fork, respectively are
A. 200400
B. 205410
C. 195390
D. 100200

Answer: A

47. In the figure shown the wave speed is v. The velocity of car is v_{0} The beat frequency for the observer will be
A. $\frac{2 f_{0} v v_{0}}{v^{2}+v_{0}^{2}}$
B. $\frac{2 f_{0} v^{2}}{v^{2}-v_{0}^{2}}$
C. $\frac{2 f_{0} v v_{0}}{v^{2}-v_{0}^{2}}$
D. $\frac{f_{0} v v_{0}}{v^{2}-v_{0}^{2}}$

Answer: C

- View Text Solution

48. What will be the frequency of beats formed from the superposition of two harmonic waves shown below?
A. 20 Hz
B. 11 Hz
C. 9 Hz
D. 2 Hz

Answer: D
49. Two sound sources S_{2} and S_{1} emit pure sinusoidal coherent waves in phase. IF the speed of sound in $340 \mathrm{~m} / \mathrm{s}$. Then find out the frequencies for which construcive interference occurs at P.
A. 170 Hz
B. 340 Hz
C. 510 Hz
D. All of these

Answer: D

50. The fundamental frequency of a somometer wire of length l is f_{0}. A bridge is now introduced at a distance of
$\triangle l$ from the centre of the wire $(\Delta l \ll l)$. The number of beats heard if both sides of the bridges are set into vibration in their fundamental modes are `
A. $\frac{8 f_{0} \Delta l}{l}$
B. $\frac{f_{0} \Delta l}{l}$
C. $\frac{2 f_{0} \Delta l}{l}$
D. $\frac{4 f_{0} \Delta l}{l}$

Answer: A

- Watch Video Solution

51. A source of sound is moving with a uniform speed along a circle. The frequency of sound as heard by listener stationed all the centre of the path
A. increases
B. decreases
C. remains the same
D. may increase and decrease alternately

Answer: C

52. A whistle of frequency 385 Hz rotates in a horizontal circle of radius 50 cm at an angular speed of 20 radians
s^{-1} the lowest frequency heard by a listener a long distance way at rest with velocity to the centre of the circle given velocity of sound equal to $340 \mathrm{~ms}^{-1}$ is
A. 396 Hz
B. 363 Hz
C. 374 Hz
D. 385 Hz

Answer: C

53. A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist.

> A. $\frac{v+v_{m}}{v+v_{b}} f$
> B. $\frac{v+v_{m}}{v-v_{b}} f$
> C. $\frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f$
> D. $\frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f$

Answer: C

- Watch Video Solution

54. a sound source emits frequency of $180 h_{Z}$ when moving towards a rigid wall with speed $5 m / s$ and an observer is moving away from with speed $5 m / s$. Both source and observer moves on a straight line which is perpendicular to the wall. The number of beatd per second heard by the observer will be [speed of sound $=$ $335 m / s$]
A. 5beats /s
B. 10beats /s
C. 6beats /s
D. 8beats /s

Answer: A
55. A police car moving at $22 \mathrm{~m} / \mathrm{s}$. Chases a motorcyclist.

The policeman sound his horn at 176 Hz , while both of them move towards a stationary siren of frequency 165 Hz . The speed of the motorcycle if it is given that he does not observe any beats is
A. $33 m / s$
B. $22 m / s$
C. zero
D. $11 \mathrm{~m} / \mathrm{s}$

- View Text Solution

56. A train approaching a hill at a speed of $60 \mathrm{~km} / \mathrm{hour}$ sounds a whistle of frequency 600 Hz when it is distance of 1 km from the hill. Wind is blowing in the direction of the train with a speed of $60 \mathrm{~km} / \mathrm{h}$ Find the frequency of the whistle heard by an observer on the hill:speed of sound in air $1200 \mathrm{~km} / \mathrm{h}$)
A. 610 Hz
B. 620 Hz
C. 630 Hz
D. 650 Hz

Answer: C

D Watch Video Solution

57. Two trains are moving towards each other at speeds of $20 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$ relative to the ground. The first train sounds a whistle of frequency 600 Hz . the frequency of the whistle heard by a passenger in the second train before the train meets is (the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$)
A. 600 Hz
B. 585 Hz
C. 645 Hz

D. 666 Hz

Answer: D

- Watch Video Solution

58. Two trains move towards each other with same speed.

Speed of sound is $340 \mathrm{~m} / \mathrm{s}$. If the pitch of the tone of the whistle of one train when heard on the other train changes to $9 / 8$ times, then the speed of each train is :

A. $20 \mathrm{~m} / \mathrm{s}$
B. $2 m / s$
C. $200 \mathrm{~m} / \mathrm{s}$
D. $2000 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

Exercise 2 Concept Applicator

1. When two sound waves travel in the same direction in
a medium, the displacement of a particle located at x at time t is given by

$$
y_{1}=0.05 \cos (0.50 \pi x-10 \pi t) y_{2}=0.05 \cos (0.46 \pi x-92 \pi t)
$$

where y_{1}, y_{2} and x in meters and t in seconds. The speed of sound in the medium is:
A. $92 m / s$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $100 \mathrm{~m} / \mathrm{s}$
D. $332 m / s$

Answer: B

- Watch Video Solution

2. A progressive sound wave of frequency 500 Hz is travelling through air with a speed of $350 \mathrm{~m} / \mathrm{z}$. If a compression appears at a place at a instant, hten the
minimum time interval after which the rarefaction occurs
at the same point will be
A. 200 s
B. $\frac{1}{250} s$
C. $\frac{1}{500} s$
D. $\frac{1}{1000} s$

Answer: D

- Watch Video Solution

3. A tuning fork arrangement (pair) produces 4beats / sec
with one fork of frequency $288 c p s$. A little wax is placed
on the unknown fork and it then produces 2 beats $/ \mathrm{sec}$.

The frequency of the unknown fork is
A. 286 cps
B. 292 cps
C. 294 cps
D. 288 cps

Answer: B

- Watch Video Solution

4. The displacement of a wave disturbance propagating in the positive x -direction is given by
$y=\frac{1}{1+x^{2}}$ at $t=0$ and $y=\frac{1}{1+(x-1)^{2}}$ at $t=2 s$
where, x and y are in meter. The shape of the wave disturbance does not change during the propagation. what is the velocity of the wave?
A. 2.0
B. 4.0
C. 0.5
D. 1.0

Answer: C

- Watch Video Solution

5. A and B are two sources generating sound waves. A
listener is situated at C. The frequency of the source of A
is 500 Hz . A now moves towards C with a speed $4 \mathrm{~m} / \mathrm{s}$.
The number of beats heard at C is 6 . When A moves away
from C with speed $4 m / s$. The number of beats heard at
Cis 18 . The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. The frequency of the source at B is:
A. 500 Hz
B. 506 Hz
C. 512 Hz
D. 494 Hz

Answer: C
6. A whistle S of frequency f revolves in a circle of radius R at a constant speed v . What is the ratio of largest and smallest frequency detected by a detector D at rest at a distance $2 R$ from the centre of circle as shown in figure?
A. $\left(\frac{c+v}{c-v}\right)$
B. $\sqrt{2}\left(\frac{c+v}{c-v}\right)$
C. $\sqrt{2}$
D. $\frac{(c+v)}{c \sqrt{2}}$

Answer: A

7. A sonometer wire of length 114 cm is fixed at both the ends. Where should the two bridges be placed so as to divide the wire into three segments whose fundamental frequencies are in the ratio $1: 3: 4$?
A. At 36 cm and 84 cm from one end
B. At 24 cm and 72 cm from one end
C. At 48 cm and 96 cm from one end
D. At 72 cm and 96 cm from one end

Answer: D

- Watch Video Solution

8. While measuring the speed of sound by performing a resonance column experiment, a student gets the first resonance condition at a column length of 18 cm during winter. Repeating the same experiment during summer, she measures the column length to be $x \mathrm{~cm}$ for the second resonance. Then
A. $18>x$
B. $x>54$
C. $54>x>36$
D. $36>x>18$

Answer: B

9. A train has just completed a U-curve in a trach which is
a semi circle. The engine is at the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is $30 \mathrm{~m} / \mathrm{s}$, is
A. 181 Hz
B. 200 Hz
C. 188 Hz
D. 210 Hz

- Watch Video Solution

10. A sonometer wire resonates with a given tuning fork forming a standing wave with five antinodes between the two bridges when a mass of 9 kg is suspended from the wire. When this mass is replaced by a mass ' M ' kg , the wire resonates with the same tuning fork forming three antinodes for the same positions of the bridges. Find the value of M.
A. 25 kg
B. 5 kg
C. 12.5 kg
D. $1 / 25 \mathrm{~kg}$

Answer: A

- Watch Video Solution

11. In a transverse wave the distance between a crest and neighbouring trough at the same instant is 4.0 cm and the distance between a crest and trought at the same place is 1.0 cm . The next crest appears at the same place after a time interval of 0.4 s . The maximum speed of the vibrating particles in the medium is:

$$
\text { A. } \frac{3 \pi}{2} \mathrm{~cm} / \mathrm{s}
$$

B. $\frac{5 \pi}{2} \mathrm{~cm} / \mathrm{s}$
C. $\frac{\pi}{2} \mathrm{~cm} / \mathrm{s}$
D. $2 \pi \mathrm{~cm} / \mathrm{s}$

Answer: B

D Watch Video Solution

12. An engine approaches a hill with a constant speed.

When it is at a distance of 0.9 km , it blows a whistle whose echo is heard by the driver after 5 seconds. If the speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$, then the speed of the engine is :
A. $32 m / s$
B. $27.5 \mathrm{~m} / \mathrm{s}$
C. $60 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

13. A transverse sinusoidal wave moves along a string in the positive x-direction at a speed of $10 \mathrm{~cm} / \mathrm{s}$. The wavelength of the wave is 0.5 m and its amplitude is

10 cm . At a particular time t, the snap-shot of the wave is shown in figure. The velocity of point P when its

displacement is 5 cm is

A. $\frac{\sqrt{3 \pi}}{50} j m / s$
B. $-\frac{\sqrt{3 \pi}}{50} j m / s$
C. $\frac{\sqrt{3 \pi}}{50} \mathrm{Im} / \mathrm{s}$
D. $-\frac{\sqrt{3 \pi}}{50} \mathrm{im} / \mathrm{s}$

Answer: A

- View Text Solution

14. The frequency of a stretched uniform wire under tension is in resonance with the fundamental frequency of a closed tube. If the tension in the wire is increased by

8 N , it is in resonance with the first overtone of the closed tube. The initial tension in the wire is
A. 1 N
B. 4 N
C. 8 N
D. 16 N

Answer: A

- Watch Video Solution

15. A man is watching two trains, one leaving and the other coming in with equal speed of $4 \mathrm{~m} / \mathrm{s}$. If they sound their whistles, each of frequency 240 Hz , the number of
beats heard by the man (velocity of sound in air is $320 \frac{\mathrm{~m}}{\mathrm{~s}}$) will be equal to
A. 6
B. 3
C. 0
D. 12

Answer: A

- Watch Video Solution

16. An organ pipe, open from both end produces 5 beats per second when vibrated with a source of frequency 200 Hz . The second harmonic of the same pipes produces 10
beats per second with a source of frequency 420 Hz . The frequency of source is
A. 195 Hz
B. 205 Hz
C. 190 Hz
D. 210 Hz

Answer: B

- Watch Video Solution

17. An earthquake generates both transverse (S) and longitudinal (P) sound waves in the earth. The speed of S waves is about $4.5 \mathrm{~km} / \mathrm{s}$ and that of P waves is about 8.0
km / s. A seismograph records P and S waves from an earthquake. The first P wave arrives 4.0 min before the first S wave. The epicenter of the earthquake is located at a distance about
A. 25 km
B. 250 km
C. 2500 km
D. 5000 km

Answer: C

D Watch Video Solution

18. An isotrophic point source S of sound emits constant power, Two points A and B separated by a distance r are situated near the source as shown in figure. The difference of the intensity level of sound at the points A and B is about
A. 3 dB
B. 2 dB
C. 6 dB
D. 12 dB

Answer: C

19. A column of air and a tuning fork produce 4 beats per second when sounded together. The tuning fork gives the lower note. The temperature of air is $15^{\circ} \mathrm{C}$. When the temperature falls to $10^{\circ} C$, the two produce 3 beats per second. Find the frequency of the fork.
A. 210 Hz
B. 113 Hz
C. 112 Hz
D. 110 Hz

Answer: D

20. The temperature of a mono-atomic gas in an uniform container of length L varies linearly from T_{0} to T_{L} as shown in the figure. IF the molecular weight of the gas is
M_{0} then the time taken by a wave pulse in travelling from end A to end B is
A. $\frac{2 L}{\left(\sqrt{T_{L}}+\sqrt{T_{0}}\right)} \sqrt{3 \frac{M}{5} R}$
B. $\sqrt{\frac{3\left(T_{L}-R_{0}\right)}{5 R M_{0} L}}$
C. $\frac{L}{\left(\sqrt{T_{L}}-\sqrt{T_{0}}\right)} \sqrt{3 \frac{M}{5} R}$
D. $L \sqrt{\frac{M_{0}}{2 R\left(T_{L}-T_{0}\right)}}$

Answer: A
21. A fork of unknown frequency gives 4 beats per second when sounded with another of frequency 256 . The fork is now loaded with a piece of wax and again 4 beats per second are heard. Calculate the frequency of the unknown fork.
A. 256 Hz
B. 252 Hz
C. 264 Hz
D. 260 Hz

Answer: D
22. If two tuning fork A and B are sounded together they produce 4 beats per second. A is then slightly loaded with wax, they produce 2 beats when sounded again. The frequency of A is 256 . The frequency of B will be
A. 250
B. 262
C. 252
D. 260

Answer: C

23. A source of sound is travelling at $\frac{100}{3} m s^{-1}$ along a road, towards a point A. when the source is 3 m away from A, a person standing at a point O on a road perpendicular to the track hears a sound of frequency v .

The distance of O from A at the time is 4 m . IF the original frequency is 640 Hz , then the value of v is
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz
24. The vibrations of a string of length 60 cm fixed at both the ends are represented by the equation $y=2 \sin \left(\frac{4 \pi x}{15}\right) \cos (96 \pi t)$ where x and y are in cm . The maximum number of loops that can be formed in it is
A. 4
B. 16
C. 5
D. 15

Answer: B

25. String 1 is connected with string 2 . The mass per unit
length is string 1 is μ_{1} and the mass per unit length in string 2 is $4 \mu_{1}$. The tension in the strings is T. A travelling wave is coming from the left. What fraction of the energy in the incident wave goes into string 2 ?
A. $1 / 8$
B. $4 / 9$
C. $2 / 3$
D. $8 / 9$

Answer: D
26. A wave travelling along the x-axis is described by the equation $\quad v(x, t)=0.005 \cos (\alpha x-\beta t)$. If the
wavelength and the time period of the wave are 0.08 m
and $2.0 s$, respectively, then α and β in appropriate units
are
A. $\alpha=25.00 \pi, \beta=\pi$
B. $\alpha=\frac{0.08}{\pi}, \beta=\frac{2.0}{\pi}$
C. $\alpha=\frac{0.04}{\pi}, \beta=\frac{1.0}{\pi}$
D. $\alpha=12.50 \pi, \beta=\frac{\pi}{2.0}$

Answer: A

27. A thick uniform rope of length L is hanging from a rigid support . A transverse wave of wavelength λ_{0} is set up at the middle of rope as shown in the figure. The wavelength of the wave as it reaches to the topmost point is
A. $2 \lambda_{0}$
B. $\sqrt{2} \lambda_{0}$
C. $\frac{\lambda_{0}}{\sqrt{2}}$
D. λ_{0}
28. An engine running at speed $\frac{v}{10}$ sounds a whistle of frequency 600 Hz . A passenger in a train coming from the oppsite side at speed of $\frac{v}{15}$ experiences this whistle to be of frequency f. If v is speed of sound in air and there is no wind. F is nearest to
A. 710 Hz
B. 630 Hz
C. 580 Hz
D. 510 Hz
29. A tuning fork of frequency 512 Hz makes 4 beats//s with the vibrating string of a piano. The beat frequency decreases to 2 beats $/ / \mathrm{s}$ when the tension in the piano string is slightly increased.The frequency of the piano string before increasing the tension was
A. 510 Hz
B. 514 Hz
C. 516 Hz
D. 508 Hz

Answer: D
30. A uniform tube of length 60.5 cm is held vertically with its lower end dipped in water. A sound source of frequency 500 Hz sends sound a waves into the tube. When the length of tube above water is 16 cm and again when it is 50 cm , the tube resonates with the source of sound . Two lowest frequencies to which tube will resonate when it is taken out of water are,
A. 281562
B. 281843
C. 276552
D. 272544

Answer: D

- View Text Solution

