©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

APPLICATION OF DERIVATIVES

Others

1. If p and q are positive real numbers such
that $p^{2}+q^{2}=1$, then the maximum value of
$(p+q)$ is (1) $2(2) 1 / 2$ (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{2}$

- Watch Video Solution

2. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$
is an increasing function in (1) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

$$
\begin{equation*}
\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)(3)\left(0, \frac{\pi}{2}\right)(4)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \tag{2}
\end{equation*}
$$

- Watch Video Solution

3. How many real solutions does the equation
$x^{7}+14 x^{5}+16 x^{3}+30 x-560=0$ have $?$
$7(2) 1(3) 3(4) 5$

D Watch Video Solution

4. Let $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{ll}k-2 x & \text { if } x \leq-1 \\ 2 x+3 & \text { if } x>-1\end{array}\right.$. If f has a
local minimum at $x=1$, then a possible value
of k is (1) $0(2)-\frac{1}{2}(3)-1$ (4) 1

D Watch Video Solution

5. The equation of the tangent to the curve $y=x+\frac{4}{x^{2}}$, that is parallel to the x -axis, is (1) $y=1$ (2) $y=2$ (3) $y=3$ (4) $y=0$

- Watch Video Solution

6. The shortest distance between line $y-x=1$
and curve $x=y^{2}$ is : (1) $\frac{\sqrt{3}}{4}$ (2) $\frac{3 \sqrt{2}}{8}$ (3) $\frac{8}{3 \sqrt{2}}$ (4) $\frac{4}{\sqrt{3}}$
7. A spherical balloon is filled with 4500pie cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of
72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is (1) $\frac{9}{7}$ (2) $\frac{7}{9}$ (3) $\frac{2}{9}$ (4) $\frac{9}{2}$

- Watch Video Solution

8. The intercepts on x-axis made by tangents to the curve, $y=\int_{0}^{x}|t| d t, x \in R$, which are
parallel to the line $y=2 x$, are equal to (1) ± 2
(2) $\pm 3(3) \pm 4(4) \pm 1$

D Watch Video Solution
9. If f and g are differentiable functions in $[0,1]$
satisfying $\quad f(0)=2=g(1), g(0)=0 \quad$ and
$f(1)=6$, then for some $c \in] 0,1[$
$2 f^{\prime}(c)=g^{\prime}(c) \quad$ (2) $\quad 2 f^{\prime}(c)=3 g^{\prime}(c)$
$f^{\prime}(c)=g^{\prime}(c)(4) f^{\prime}(c)=2 g^{\prime}(c)$

D Watch Video Solution

10. A bird is sitting on the top of a vertical pole

20 m high and its elevation from a point O on
the ground is 450 . It flies off horizontally straight away from the point 0 . After one second, the elevation of the bird from O is reduced to 30 o . Then the speed (in m / s) of the bird is (1) $40(\sqrt{2}-1)$ (2) $40(\sqrt{3}-2)$
$20 \sqrt{2}(4) 20(\sqrt{3}-1)$

- View Text Solution

11. A wire of length 2 units is cut into two parts
which are bent respectively to form a square of side $=x$ units and a circle of radius $=r$ units. If the sum of the areas of the square and the circle so formed is minimum, then : (1)
$2 x=(\pi+4) r(2)(\pi+4) x=\pi r$ (3) $x=2 r$
(4) $2 x=r$

D View Text Solution
12. The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines $y=|x|$ is: $4(\sqrt{2}-1)(2) 4(\sqrt{2}+1)$
$2(\sqrt{2}+1)(4) 2(\sqrt{2}-1)$

- View Text Solution

13. Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in
$s q \dot{m})$ of the flower-bed is: (1) 25 (2) 30 (3) 12.5
(4) 10

D Watch Video Solution

14. The normal to the curve
$y(x-2)(x-3)=x+6$ at the point where
the curve intersects the y-axis , passes through
the point : (1) $\left(\frac{1}{2},-\frac{1}{3}\right)$ (2) $\left(\frac{1}{2}, \frac{1}{3}\right)$
$\left(-\frac{1}{2},-\frac{1}{2}\right)(4)\left(\frac{1}{2}, \frac{1}{2}\right)$

- Watch Video Solution
(

