©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

PRACTICE TEST - 5

Physics

1. A plane glass slab is kept over various coloured letters, the letter which appears least raised is -
A. blue
B. violet
C. green
D. red

Answer: D

D View Text Solution

2. A plane mirror is placed horizontally on level ground at a distance of 60 m from the foot of a tower, the light ray from the top of the
tower falling just inside at the edge of the mirror suffers a deviation of 90°. The height of tower is:

A. 30 m
B. 90 m
C. 60 m
D. 120 m

Answer: B

D View Text Solution

3. The reflective surface is given by $y=2 \sin x$.

The reflective surface is facing positive axis.
What is the least value of coordinates of the point where a ray parallel to positive x-axis becomes parallel to positive y-axis after reflection?
A. $\left(\frac{\pi}{3}, \sqrt{3}\right)$
B. $\left(\frac{\pi}{2}, \sqrt{2}\right)$
C. $\left(\frac{\pi}{3}, \sqrt{2}\right)$
D. $\left(\frac{\pi}{4}, \sqrt{3}\right)$

Answer: A

D View Text Solution

4. A fish looking up through the water sees the outside world contained in a circular horizon.

If the refractive index of water is $4 / 3$ and the
fish is 12 cm below the surface then radius of

circle in cm is-

A. $12 \times 3 \times \sqrt{5}$
12×3
B.
$\sqrt{5}$
C. $12 \times 3 \times \sqrt{7}$
12×3
D.
$\sqrt{7}$

Answer: D

D View Text Solution

5. The distance between object and its erect but diminished image formed due to a spherical mirror is 3 times the distance between image and the focus while distance between object and focus is 2 u . If the image is half in size of the object, find the distance of the object from the mirror:
A. $\frac{3 u}{2}$
B. $\frac{u}{2}$
C. u
D. $\frac{3 u}{4}$

Answer: C

D View Text Solution
6. Diameter of a plano-convex lens is 6 cm and
thickness at the centre is 3 mm . If the speed of
light in the material of the lens is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$,
the de focal length of the lens is tower is:
A. 15 cm
B. 20 cm
C. 30 cm
D. 10 cm

Answer: C

D View Text Solution
7. A man standing infront of a concave spherical mirror of radius of curvature 120 cm sees an erect image of his face four times its natural size. Then the distance of the man from the mirror is -
A. 180 cm
B. 300 cm
C. 240 cm
D. 45 cm

Answer: D
8. As shown in figure, a converget lens is
placed inside a cell filled with liquid. The lens
has focal length +20 cm when in air and its material has refractive index 1.50 . If the liquid has refractive index 1.60 , the focal length of
the system is -

A. +80 cm
B. -80 cm
C. -24 cm
D. -100 cm

Answer: D

D View Text Solution

9. A convex lens forms an image of an object on a screen 30 cm from the lens. When the
lens is moved 90 cm towards the object the
image is again formed on the screen. Then, the
focal length of the lens is
A. 13 cm approximately
B. 23 cm approximately
C. 33 cm approximately
D. 40 cm approximately

Answer: D

D View Text Solution
10. A cubical room is formed with 6 plane mirrors. An insect moves along diagonal of the
floor with uniform speed. The velocity of its image in two adjacent walls are $20 \sqrt{2} \mathrm{~cm} / \mathrm{s}$.

Then the velocity of image formed by the roof is
A. $20 \mathrm{~cm} / \mathrm{sec}$
B. $40 \mathrm{~cm} / \mathrm{sec}$
C. $20 \sqrt{2} \mathrm{~cm} / \mathrm{sec}$
D. $10 \sqrt{2} \mathrm{~cm} / \mathrm{sec}$

Answer: B

D View Text Solution

11. Angle of a prism is A and its one surface is
silvered. Light rays falling at an angle of incidence of 2 A on first surface relum back
through the same path after suffering reflection at the second silvered surface. Refractive index of the material is -
A. $2 \sin A$
B. $2 \cos A$
C. $(1 / 2) \cos A$
D. $\tan \mathrm{A}$

Answer: B

D View Text Solution

12. In the diagram, a prism of angle 30° is used. A ray PQ is incident as shown. An emergent ray RS emerges perpendicular to the
second face. The angle of deviation is -

A. 0°
B. 60°
C. 30°
D. 90°

Answer: C

D View Text Solution

13. A fly is sitting on the objective of a telescope pointed towards the moon. What effect is expected in a photograph of the moon taken through the telescope?
A. The entire field of vision is blocked
B. There is an image of the fiy on the photograph

C. There is no effect at all

D. There is a reduction in the intensity of

 image
Answer: D

D View Text Solution

14. A cylindrical lens is required to correct
A. myopia
B. presbyopia
C. hypermetropia
D. astigmatism

Answer: D

D View Text Solution

15. An astronomical telescope of ten-fold angular magnification has length of 44 cm .

The focal length of the objective is -
A. 4 cm
B. 40 cm
C. 44 cm
D. 440 cm

Answer: B

D View Text Solution

16. A source of 500 candela is placed at the centre of a piece of spherical surface of area
$0.5 \mathrm{~m}^{2}$. If the radius of surface be 5 m , what is the luminous flux through the surface?
A. 5 lumen
B. 10 lumen
C. 25 lumen
D. 50 lumen

Answer: B

- View Text Solution

17. An illuminance of 2.5×10^{5} lumen/metre ${ }^{2}$
is produced by sunlight falling normally on the
surface of the earth. The distance of the earth
from the sun is $1.5 \times 10^{8} \mathrm{~km}$. The lumen flux of the sun is

A. 3.5×10^{28} lumen

B. 3.56×10^{27} lumen
C. 7.065×10^{28} lumen
D. 8×10^{29} lumen

Answer: C

- View Text Solution

18. In an interference pattern produced by two
identical slits, the intensity at the site of central maximum is I. The intensity at the same spot when either of the two slits is closed is I_{0}. We must have -

$$
\begin{aligned}
& \text { A. } I=I_{0} \\
& \text { B. } I=2 I_{0} \\
& \text { C. } I=4 I_{0}
\end{aligned}
$$

D. I and I_{0} are not related

Answer: C
19. The angular fringe width of fringes formed with sodium light of wavelength $5890 \AA$ is
0.20°. If the whole arrangement is immersed in water, then the angular width of the fringes
will become -
A. 0.11°
B. 0.15°
C. 0.22°

D. 0.30°

Answer: B

D View Text Solution

20. Two sources give interference pattern which is observed on a screen, D distance apart from the sources. The fringe width is 2β
. If the distance D is now doubled, then the
fringe width will -
A. become β
B. become $\frac{\beta}{2}$
C. 4β
D. remain the same

Answer: C

D View Text Solution

21. The fringe width in Young's double slit experiment increases when -
A. wavelength increases
B. distance between source and screen decreases
C. distance between slits increases
D. the width of the slits increases

Answer: A

D View Text Solution
22. If light of wavelength $6000 \AA$ is used in
fraunhoffer single slit diffraction experiment
with slit width $12 \times 10^{-7} \mathrm{~m}$. Then angular width of central maxima is
A. 30°
B. 60°
C. 90°

D. none of these

Answer: B

D View Text Solution
23. The first diffraction minimum due to a single slit diffraction is at $\theta=30^{\circ}$ for a light of wavelength $5000 \AA$. The width of the slit is -

> A. $5 \times 10^{-5} \mathrm{~cm}$
> B. $1.0 \times 10^{-4} \mathrm{~cm}$
> C. $2.5 \times 10^{-5} \mathrm{~cm}$
> D. $1.25 \times 10^{-5} \mathrm{~cm}$

Answer: B

D View Text Solution
24. Light incident on a surface separating two
media is partly reflected and partly refracted
as shown in the figure. Then:

$\mathrm{A} \cdot \sin i=\frac{\mu_{2}}{\left(\mu_{1}^{2}+\mu_{2}^{2}\right)^{1 / 2}}$
B. $\tan i=\frac{\mu_{1}}{\mu_{2}}$

C. $\sin i=\mu_{1} \mu_{2}$

$$
\text { D. } \sin i=\frac{\mu_{2}}{\mu_{1}}
$$

Answer: A

D View Text Solution

25. The angle of incidence at which reflected
light is totally polarised for reflection from air to glass (refractive index n) is -

$$
\text { A. } \sin ^{-1} n
$$

> B. $\left(\sin ^{-1}(1 / n)\right.$
> C. $\tan ^{-1}(1 / n)$
> D. $\tan ^{-1}(n)$

Answer: D

D View Text Solution

26. The maximum number of possible interference maxima for slit separation equal to twice the wavelength in Young's double slit
A. infinite
B. five
C. three
D. zero

Answer: B

D View Text Solution

27. Two periodic waves of intensities I_{1} and I_{2} pass through a region at the same time in the
same direction. The sum of the maximum and minimum intensities is -

$$
\begin{aligned}
& \text { A. }\left(\sqrt{I}_{1}-\sqrt{I}_{2}\right)^{2} \\
& \text { B. } 2\left(I_{1}+I_{2}\right) \\
& \text { C. } I_{1}+I_{2} \\
& \text { D. }\left(\sqrt{I}_{1}+\sqrt{I}_{2}\right)^{2}
\end{aligned}
$$

Answer: B

D View Text Solution

28. The relationship between phase difference

$\Delta \phi$ and. the path difference Δx between two interfering waves is given by

$$
\begin{aligned}
& \text { A. } \Delta x=\left(\frac{\lambda}{2 \pi}\right) \Delta \phi \\
& \text { B. } \Delta x=\left(\frac{2 \pi}{\lambda}\right) \Delta \phi \\
& \text { C. } \Delta \phi=\left(\frac{\lambda}{\pi}\right) \Delta x \\
& \text { D. } \Delta \phi=(2 \pi) \Delta x
\end{aligned}
$$

Answer: A
29. A cavity of the shape of equiconvex lens is
cut in a slab of refractive index μ. It is filled
with different liquids of refractive indices μ_{1}
and μ_{2} so that if once it behave as convergent
lens with liquid of refractive index μ_{1}, it behaves as divergent lens with another liquid of same focal length. Find μ_{2} :
A. $2 \mu-\mu_{1}$
B. $2 \mu_{1}$
C. $2 \mu / \mu_{1}$

D. $\mu_{1} / 2 \mu$

Answer: A

D View Text Solution

30. A concave mirror of focal length ' f_{1} ' is
placed at a distance of 'd' from a convex lens
of focal length ' f_{2} '. A beam of light coming
from infinity and falling on this convex lens-
concave mirror combination returns to infinity.

The distance d' must equal -
A. $f_{1}+f_{2}$

$$
\text { B. }-f_{1}+f_{2}
$$

C. $2 f_{1}+f_{2}$
D. $-2 f_{1}+f_{2}$

Answer: C

D View Text Solution
31. The correct formula for fringe visibility is -
A. $V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}$

> B. $V=\frac{I_{\max }+I_{\min }}{I_{\max }-I_{\min }}$
> C. $V=\frac{I_{\max }}{I_{\min }}$
> D. $V=\frac{I_{\min }}{I_{\max }}$

Answer: A

D View Text Solution

32. The correct relation between the size of
the obstacle and wavelength of light in order to observe the diffraction event is -
A. $\frac{a}{\lambda}=1$
B. $\frac{a}{\lambda}=0$
C. $\frac{a}{\lambda}=\infty$
D. $\frac{a}{\lambda}=150$

Answer: A

D View Text Solution

33. A ray of light strikes a glass plate at an angle of 60°. If the reflected and refracted
rays are perpendicular to each other, the index of refraction of glass is -

> А. $\frac{1}{2}$
> В. $\sqrt{\frac{3}{2}}$
> С. $\frac{3}{2}$
D. 1.732

Answer: D

D View Text Solution
34. If length of an optically active solution is /
decimeters and concentration is c gram/c.c.,
its specific rotation is -
A. $\theta / l c$
B. $l c / \theta$
C. $\frac{\theta l}{c}$
D. $\frac{\theta c}{l}$

Answer: A

D View Text Solution
35. Figure shows two parallel rays incident on
a mirror. They are reflected as parallel rays as
shown in the same figure. What is the nature of the mirror?

A. Plane
B. Convex

C. Concave

D. Parabolic

Answer: A

D View Text Solution

36. The angle of minimum deviation for a thin
prism when in air and when dipped in water
has a ratio :
A. $\frac{1}{4}$
B. $\frac{8}{2}$
C. $\frac{1}{2}$
D. none of these

Answer: D

D View Text Solution

37. Two thin lenses are in contact and the focal
length of the combination is 80 cm . If the focal
length of one lens is 20 cm , then the power of the other lens will be
A. 1.66 D
B. 4.00 D
C. - 100 D
D. -3.75 D

Answer: D

D View Text Solution

38. Refractive index of prism is $\sqrt{3}$. The maximum value of angle A of prism so that a ray of light incidenting on face $A B$ retraces its
path is -

A. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\sin ^{-1} \sqrt{3}$
C. $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: D

D View Text Solution

39. A double convex lens made of glass of refractive index 1.6 has radius of curvature 15 cm each. The focal length of this lens when immersed in a fluid of refractive index 1.63 is
A. -40.75 cm
B. +407.5 cm
C. 125 cm

D. 25 cm

Answer: B

D View Text Solution

40. An achromatic convergent lens of focal
length +20 cms is made of two lenses (in contact) of materials having dispersive powers in the ratio of $1: 2$ and having focal lengths f_{1} and f_{2}. Which of the following is true ?

$$
\text { A. } f_{1}=10 \mathrm{cms}, f_{2}=-20 \mathrm{cms}
$$

B. $f_{1}=20 \mathrm{cms}, f_{2}=10 \mathrm{cms}$
C. $f_{1}=-10 \mathrm{cms}, f_{2}=-20 \mathrm{cms}$
D. $f_{1}=20 \mathrm{cms}, f_{2}=-10 \mathrm{cms}$

Answer: A

D View Text Solution

41. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object in such a way that parallel rays
emerge from the eye lens. If the object subtends an angle of 2° at the objective, the angular width of the image is
A. 10°
B. 24°
C. 50°
D. $(1 / 6)^{\circ}$

Answer: B

D View Text Solution
42. A man's near point is 0.5 m and far point is

3 m . Power of spectacle lenses required for (i)
reading purposes, (ii) seeing distant objects,
respectively, are -
A. $-2 D$ and $+3 D$
B. +2 D and 3D
C. +2 D and -0.33 D
D. $-2 D$ and $+0.33 D$

Answer: C

D View Text Solution
43. A concave mirror of focal length f (in air) is
immersed in water ($\mu=4 / 3$). The focal length
of the mirror in water will be
A. f
B. $(4 / 3) f$
C. $(3 / 4) \mathrm{f}$
D. $(7 / 3) \mathrm{f}$

Answer: A
44. A ray of light from a denser medium strikes
a rarer medium at an angle of incidence i as
shown in figure. Refracted and reflected rays make an angle of 90° with each other. Angle of reflection and refraction are r and r^{\prime}. Then critical angle is -

A. $\sin ^{-1}(\sin i)$
B. $\sin ^{-1}(\sin r)$
C. $\sin ^{-1}(\cos i)$
D. $\sin ^{-1}(\tan r)$

Answer: D

D View Text Solution

45. Nature of the final image in a compound microscope is -
A. Virtual, inverted
B. Virtual, erect
C. Real, erect

D. None of these

Answer: A

- View Text Solution

