

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

MECHANICAL PROPERTIES OF SOLIDS

Question Bank

1. The diameter of a brass rod is 4 mm and

Young's modulus of brass is $9 imes 10^{10} N/m^2$.

The force required to stretch by 0.1~% of its length is

Watch Video Solution

2. A thin rod of negligible mass and a cross-section of $2\times 10^{-6}m^2$ suspended vertically from one end, has a length of 0.5m at $200^{\circ}C$. The rod is cooled at $0^{\circ}C$, but prevented from contracting by attaching a mass at the lower end. The value of this mass is : (Young's

modulus $= 10^{11} N/m^2$, Coefficient of linear expansion $10^{-5}K^{-1}$ and $g = 10m/s^2$):

3. Two identical steel cubes (masses 50g, side 1cm) collide head on face to face with a speed of 10 cm/s each. Find the maximum compression of each. Young's modulus for steel = $Y = 2 \times 10^{11} N/m^2$.

Watch Video Solution

4. A rubber cord has a cross -sectional area $1mm^2$ and total unstretched length 10.0cm. It is streched to 12.0cm and then released to project a missile of mass 5.0 g.Taking young's modulus Y for rubber as $5.0 \times 10^8 N/m^2$. Calculate the velocity of projection .

Watch Video Solution