©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS
 (HINGLISH)

MECHANICAL PROPERTIES OF SOLIDS

Question Bank

1. The diameter of a brass rod is 4 mm and

Young's modulus of brass is $9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.

The force required to stretch by 0.1 \% of its length is

D Watch Video Solution

2. A thin rod of negligible mass and a crosssection of $2 \times 10^{-6} m^{2}$ suspended vertically from one end, has a length of 0.5 m at $200^{\circ} \mathrm{C}$.

The rod is cooled at $0^{\circ} C$, but prevented from contracting by attaching a mass at the lower end. The value of this mass is : (Young's
modulus $=10^{11} \mathrm{~N} / \mathrm{m}^{2}$, Coefficient of linear expansion $10^{-5} K^{-1}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$):

D Watch Video Solution

3. Two identical steel cubes (masses 50 g , side 1 cm) collide head on face to face with a speed of $10 \mathrm{~cm} / \mathrm{s}$ each. Find the maximum compression of each. Young's modulus for steel $=Y=2 \times 10^{11} N / m^{2}$.
4. A rubber cord has a cross -sectional area $1 \mathrm{~mm}^{2}$ and total unstretched length 10.0 cm . It is streched to 12.0 cm and then released to project a missile of mass 5.0 g.Taking young's modulus Y for rubber as $5.0 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
.Calculate the velocity of projection .

D Watch Video Solution

