©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

QUESTION PAPER 2020

Part I Chemistry

1. The acidity of

Follows the order
A. $I>I I>I I I>I V$
B. $I V>I I I>I I>I$
C. $I I I>I V>I>I I$
D. $I I I>I I>I V>I$

Answer: C

- Watch Video Solution

2. Among the following

I

II

III

IV

v
the compound which can exhibit optical activity are :
A. only II, IV and V
B. only IV and V
C. only I, II and V
D. only I, II and IV

Answer: A

D Watch Video Solution

3. A molecule which has $1^{\circ}, 2^{\circ}$ and 3° carbon atom is :
A. 2,3,4-trimethylpentane
B. chlorocyclohexane
C. 2,2-dimethylcyclohexane
D. methylcyclohexane

Answer: D

D Watch Video Solution

4. Which of the following can be purified by steam distillation?
A. acetone
B. aniline
C. glucose

D. ethanol

Answer: B

- Watch Video Solution

5. Among the following the most acidic compound is :

Answer: B

- Watch Video Solution

6. A closed 10 L vessel contains 1 L water gas (1:1
$C O: H_{2}$) and 9 L air (20\% O_{2} by volume) at STP. The
contents of the vessel are ignited. The number of moles of CO_{2} in the vessel is closest to :
A. 0.22
B. 0.022
C. 0.9
D. 3.6

Answer: B

- Watch Video Solution

7. A certain metal has a work function of $\Phi=2 \mathrm{eV}$. It is irradiated first with 1 W of 400 nm light and later
with 1 W of 800 nm light. Among the following, the correct statement is :
[Given : Planck constant $(\mathrm{h})=6.626 \times 10^{-34} \mathrm{~m}^{2} \mathrm{kgs}^{-1}$, Speed of light (e) $=3 \times 10^{8} \mathrm{~ms}^{-1}$]
A. Both colors of light give rise to same number of photoelectrons.
B. 400 nm light gives rise to less energetic photoelectrons than 800 nm light.
C. 400 nm light leads to more photoelectrons.
D. 800 nm light leads to more photoelectrons.

Answer: C

8. Among the following, the correct statement about the chemical equilibrium is :
A. Equilibrium constant is independent of temperature.
B. Equilibrium constant tells us how fast the reaction reaches equilibrium.
C. At equilibrium, the forward and the backward
reactions stop so that the concentrations of reactants and products are constant.

D. Equilibrium constant is independent of whether

you start the reaction with reactants or products.

Answer: D

- Watch Video Solution

9. Among the following, the plot that shows the correct marking of most probable velocity $\left(V_{M P}\right)$ average velocity (\vec{V}) and root mean square velocity $\left(V_{R M S}\right)$ is :
A.

B.

C.

Answer: D

D Watch Video Solution

10. The correct set of quantum numbers for the unpaired electron of Cu atom is :
A. $n=3, I=2, m=-2, s=+1 / 2$
B. $n=3, l=2, m=+2, s=-1 / 2$
C. $n=4, l=0, m=0, s=+1 / 2$
D. $n=4, l=1, m=+1, s=+1 / 2$

Answer: C

- Watch Video Solution

11. Among the following, the most polar molecule is :
A. $A l C l_{3}$
B. CCl_{4}
C. $S e C l_{6}$
D. AsCl_{3}

Answer: D

- Watch Video Solution

12. The covalent characters of $\mathrm{CaCl}_{2} \mathrm{BaCl}_{2}, \mathrm{SrCl}_{2}$ and $M g C l_{2}$ follow the order :
A. $\mathrm{CaCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{SrCl}_{2}<\mathrm{MgCl}_{2}$
B. $\mathrm{BaCl}_{2}<\mathrm{SrCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{MgCl}_{2}$
C. $\mathrm{CaCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{SrCl}_{2}$
D. $\mathrm{SrCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{BaCl}_{2}$

- Watch Video Solution

13. Among the following, the correct statement is :
A. 100. has four significant figures
B. 1.00×10^{2} has four significant figures
C. 2.005 has four significant figures
D. 0.0025 has four significant figures

Answer: C

14. A thermodynamic cycle in the pressure (P) - volume
(V) plane is given below :

$A B$ and $C D$ are isothermal processes while $B C$ and $D A$ are adiabatic processes. The same cycle in the temperature (T) - entropy (S) plane is :

Answer: A

- Watch Video Solution

15. The first ionization potential (IP) of the elements Na ,
$\mathrm{Mg}, \mathrm{Si}, \mathrm{P}, \mathrm{Cl}$ and Ar are 5.14, 7.65, 8.15, 10.49, 12.97 and
15.76 eV , respectively. The IP (in eV) of K is closest to :
A. 13.3
B. 18.2
C. 4.3
D. 6.4

Answer: C

- Watch Video Solution

Part li Chemistry

1. A hydrocarbon X with molecular fomula $C_{4} H_{6}$
decolorizes bromine water and forms a white

X with HgCl_{2} in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces a compounds, which gives a yellow precipitate when treated with I_{2} and NaOH . The structure of X is :
A.
$\mathrm{HC}^{\mathrm{C}} \mathrm{Me}$
B.
$\mathrm{Me}^{\mathrm{Me}}$

D.

Answer: D

2. 0.102 g of an organic compound X was oxidized with fuming nitric acid. The resulting solution, after reaction with an excess of aqueous BaCl_{2} produced 0.233 g of BaSO_{4} as a precipitate, compound X is likely to be :
[Given : Atomic wt. of $\mathrm{Ba}=137$]
A.

B.

C.

D.

Answer: D

D Watch Video Solution

3. The specific heat of a certain substance is 0.86
$J g^{-1} K^{-1}$. Assuming ideal solution behavior. The energy required (in J) to heat 10 g of 1 molal of its aqueous solution from 300 K is closed to :
[Given molar mass of the substance $=58 \mathrm{~g} \mathrm{~mol}^{-1}$, specific heat of water $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$]
A. 401.7
B. 424.7
C. 420
D. 86

Answer: A

- Watch Video Solution

4. Strength of a $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is labelled as 1.79 N . its
strength can also be expressed as closest to :
A. 20 volume
B. 5 volume
C. 10 volume
D. 15 volume

Answer: C

- Watch Video Solution

5. The isotherms of a gas are shown below :

Among the following
(i) At T_{1}, the gas cannot be liquified
(ii) At point B, liquid starts to appear at T_{2}
(iii) T_{C} is the highest temperature at which the gas can
be liquified
(iv) At point A, a small increase in pressure condense the whole system to a liquid. teh correct statements are :
A. only (i) and (ii)
B. only (i), (iii) and (iv)
C. only (ii), (iii) and (iv)
D. (i), (ii), (iii) and (iv)

Answer: D

D Watch Video Solution

1. The Stability of

Follow the order
A. I gt II gt III
B. II gt I gt III
C. II gt III gt I
D. III gt II gt I

Answer: B
2. Among the following, the biodegradable polymer is :
A. polylactic acid
B. polyvinyl chloride
C. bakelite
D. teflon

Answer: A
3. Among the following,

the compounds which can be reduced with formaldehyde and conc.aq. KOH , are :
A. only II and V
B. only I and V
C. only II and III
D. only I, II and IV

Answer: A

4. An organic compound that is commonly used for sanitizing surfaces is :
A. acetylsalicylic acid
B. chloramphenicol
C. aspartame
D. cetyltrimethyl ammonium bromide

Answer: D

- Watch Video Solution

5. The rates of reaction of NaOH with

follow the order :-
A. $I I>I>I I I$
B. $I I>I I I>I$
C. $I>I I I>I I$
D. $I I I>I I>I$

Answer: C
6. The most suitable reagent for the conversion of 2phenylpropanamide into 1-phenylethylamine is :-
A. $H_{2} P d / C$
B. $\mathrm{Br}_{2}, \mathrm{NaOH}$
C. $\mathrm{LiAilH}_{4}, E t_{2} \mathrm{O}$
D. $\mathrm{NaBH}_{4}, \mathrm{MeOH}$

Answer: B

- Watch Video Solution

7. The compound X in the following reaction scheme :

A. acetonitrile
B. methyl isocyanide
C. acetaldehyde
D. nitromethane

Answer: A

8. A nucleus X captures a β particle and then emits a neutron and γ ray to form Y .
A. isomorphs
B. isotopes
C. isobars
D. isotones

Answer: D

- Watch Video Solution

9. The boiling point (in ${ }^{\circ} \mathrm{C}$) of 0.1 molal aqueous solution of $\mathrm{CuSO}_{4.5} \mathrm{H}_{2} \mathrm{O}$ at 1 bar is closest to: [Given: Ebullioscopic (molal boiling point elevation) constant of water, $K_{b}=0.512 \mathrm{KKgmol}^{-1}$] :-
A. 100.36
B. 99.64
C. 100.10
D. 99.90

Answer: C

10. A weak acid is titrated with a weak base. Consider the following statmenets regarding the pH of the solution at the equivalence point :
(i) pH depends on the concentration of acid and base.
(ii) pH is independent of the concentration of acid and base.
(iii) pH depends on the $p K_{a}$ of acid and $p K_{b}$ of base.
(iv) pH is independent of the $p K_{a}$ of acid and $p K_{b}$ of base.

The correct statments are :
A. only (i) and (iii)
B. only (i) and (iv)
C. only (ii) and (iii)

```
D. only (ii) and (iv)
```


Answer: C

- Watch Video Solution

11. Products are favored in a chemical reaction taking place at a constant temperature and pressure. Consider the following statements :
(i) The change in Gibbs energy for the reaction is negative.
(ii) the total change in Gibbs energy for the reaction and the surroundings is negative.
(iii) The change in entropy for the reaction is positive.
(iv) The total change in entropy for the reaction and the surrounding is positive.

The statments which are ALWAYS true are :
A. only (i) and (iii)
B. only (i) and (iv)
C. only (ii) and (iv)
D. only (ii) and (iii)

Answer: B
12. A mixture of toluene and benzene forms a nearly ideal solution. Assume P_{B}° and P_{T}° to be the vapor pressures of pure benzene and toluene, respectively.

The slope of the line obtained by plotting the total vapor pressure to the mole fraction of benzene is:
A. $P_{B}^{\circ}-P_{T}^{\circ}$
B. $P_{T}^{\circ}-P_{B}^{\circ}$
C. $P_{B}^{\circ}+P_{T}^{\circ}$
D. $\left(P_{B}^{\circ}+P_{T}^{\circ}\right) / 2$

Answer: A

13. Upon dipping a copper rod, the aqueous solution of the salt that can turn blue is :-
A. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
D. $A g \mathrm{NO}_{3}$

Answer: D

- Watch Video Solution

14. Treatment of alkaline KMnO_{4} solution with KI solution oxidizes iodide to:
A. I_{2}
B. IO_{4}^{-}
C. IO_{3}^{-}
D. IO_{2}^{-}

Answer: C

- Watch Video Solution

15. If an extra electron is added to the hypothetical molecule C_{2} this extra electron will occupy the molecular orbital:
A. $\pi_{2 p}^{*}$
B. $\pi_{2 p}$
C. $\sigma_{2 p}^{*}$
D. $\sigma_{2 p}$

Answer: D

- Watch Video Solution

16. Among the following the square planar geometry is exhibited by:
A. CdCl_{4}^{2-}
B. $Z n(C N)_{4}^{2-}$
C. $P d C l_{4}^{2-}$
D. $\mathrm{Cu}(\mathrm{CN})_{4}^{3-}$

Answer: C

- Watch Video Solution

17. The correct pair of orbitals involved in t-bonding between metal and CO in metal carbonyl complexes is:
A. metal $d_{x y}$ and carbonyl π_{x}^{*}
B. metal $d_{x y}$ and carbonyl π_{x}
C. metal $d_{x^{2}-y^{2}}$ and carbonyl π_{x}^{*}
D. metal $d_{x^{2}-y^{2}}$ and carbonyl π_{x}

Answer: A

- Watch Video Solution

18. The magnetic moment (in μ_{B}) of
[Ni (dimethylglyxoimate) $)_{2}$] complex is closest to:
A. $5: 37$
B. 0.00
C. 1.73
D. 2.25

Answer: B

- Watch Video Solution

19. A compound is formed by two elements M and N.

Element N forms hexagonal closed pack array with 2/3
of the octahedral holes occupied by M. The formula of the compound is:
A. $M_{4} N_{3}$
B. $M_{2} N_{3}$
C. $M_{3} N_{2}$
D. $M_{3} N_{4}$

Answer: B
20. If the velocity of the revolving electron of He^{+}in the first orbit ($n=1$) is v. the velocity of the electron in the second orbit is:
A. v
B. 0.5 v
C. 2 v
D. $0.25 v$

Answer: B

- Watch Video Solution

1. An organic compound X with molecular formula
$C_{11} H_{14}$ gives an optically active compound on hydrogenation. Upon ozonolysis, X produces a mixture of compunds - P and Q , Compund P gives a yellow precipitate when treated with I_{2} and NaOH bu does no reduce Tollens' reagent. Compound Q does not gives any yellow precipitate with I_{2} and NaOH but gives Fehling 's test. The compund X Q does not give any yellow precipitate with I_{2} and NaOH but gives Fehling 's test. The compund X is

Ph B.
C.

Ph

Ph

D.

Answer: A

- Watch Video Solution

2. The following transformation

can be carried out in three sptes. The reagents
required for these three steps in their correct order.
Are :
A. (i) $\mathrm{NaBH}_{4},(i i) P C l_{5},(i i i) a n h \mathrm{AlCl}_{3}$
B. (i)SOCl ${ }_{2},(i i) a n h \mathrm{AlCl}_{3}:(i i i) \mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl}$
C. $(i) \mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl},(\mathrm{ii}) \mathrm{SOCl}_{2},(\mathrm{iii}) a n h . \mathrm{AlCl}_{3}$
D.
(i)conc, $\mathrm{H}_{2} \mathrm{SO}_{4},(i i) \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} . \mathrm{H}_{2} \mathrm{O}(i i i) \mathrm{KOH}$,
ethylene glycol , Δ

Answer: C

3. In the following reaction

X and Y respectively are :
A.

B.

c.

D.

Answer: D

4. A two- dimensional solid is made by alternating circles with radius a and b such that the sides of the circles touch. The packing fraction is defined as the ratio of the are under the circles to the area under the rectangle with sides of the length x and y .

The ratio $r=b / a$ for which the packing fraction is minimized is closed to :
A. 0.41
B. 1.0
C. 0.50
D. 0.32

Answer: A

- Watch Video Solution

5. Consider a reaction that is first order in both
direction
$A \underset{k_{b}}{\stackrel{k_{f}}{\rightleftarrows}} B$
Initially only A is present, and its concentration is A_{0}.
Assume A_{t} and $A_{e q}$ are the concentrations of A at time
' t ' and at equilibrium, respectively. The time 't at which
$A_{t}=\left(A_{0}+A_{e q}\right) / 2 i s$,

$$
\begin{aligned}
& \text { A. } t=\frac{\operatorname{In}\left(\frac{3}{2}\right)}{\left(K_{f}+k_{b}\right)} \\
& \text { B. } t=(\operatorname{In}) \frac{\left(\frac{3}{2}\right)}{\left(k_{f}-k_{b}\right)} \\
& \text { C. } t=\frac{\operatorname{In} 2}{\left(k_{f}+K_{b}\right)} \\
& \text { D. } t=\frac{I n 2}{\left(K_{f}-K_{b}\right)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. The reaction
$\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
is in equilibrium in a closed vessel at 298 K . The partial pressure (in atm) of $\mathrm{CO}_{2}(\mathrm{~g})$ in the reaction vessel is
closest to :
[Given : the change in Gibbs energies of formation at 298 K and 1 bar for
$C a O(s)=-603.501 \mathrm{kJmol}^{-1}$
$\mathrm{CO}_{2}(g)=-394.389 \mathrm{kJmol}^{-1}$
$\mathrm{CaCO}_{3}(s)=-1128.79 \mathrm{kJmol}^{-1}$
Gas constant $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
A. 1.13×10^{-23}
B. 0.95
C. 1.05
D. 8.79×10^{23}

Answer: A
7. A container is divided into two compartments by a removable partition as shown below :

In the first compartment n_{1} moles of ideal gas He is present in a volume V_{1}. In the second compartment, n_{2} moles of ideal gas Ne is present in a volume V_{2}. The temperature and pressure in both the compartments are T and P repectively. Assuming R is the gas constant.
the total change is entropy upon removing the partition when the gases mix irreversibly is :

$$
\begin{aligned}
& \text { A. } n_{1} R \ln \frac{V_{1}}{V_{1}+V_{2}}+n_{2} R \ln \frac{V_{2}}{v_{1}+V_{2}} \\
& \text { B. } n_{1} R \ln \frac{V_{1}+V_{2}}{V_{1}}+n_{2} R \frac{\ln \left(V_{1}+V_{2}\right)}{V_{2}}
\end{aligned}
$$

C. $\left(n_{1}+n_{2}\right) R \ln \frac{n_{1} V_{1}}{n_{2} V_{2}}$
D. $\left(n_{1}+n_{2}\right) R \frac{\ln \left(n_{2} V_{2}\right)}{n_{1} V_{1}}$

Answer: B

- Watch Video Solution

8. Number of stereoisomers possible for the octahedral complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ and $\left[\mathrm{Ni}(e n)_{2} \mathrm{Cl}_{2}\right]$
respectively, are :

[en = 1,2 ethylenediamine]

A. 2 and 4
B. 4 and 3
C. 3 and 2
D. 2 and 3

Answer: D

- Watch Video Solution

9. When a mixture of $\mathrm{NaCl}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is heated in a dry test tube, a red vapour (X) is evolved.

This vapour (X) turns an aqueous solution of NaOH yellow due to the formation of $\mathrm{Y} . \mathrm{X}$ and Y . respectively. are:
A. CrCl_{3} and $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. CrCl_{3} and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
C. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
D. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: C
10. Sodium borohydride upon treatment with iodine produces a Lewis acid (X), which on heating with ammonia produces a cyclic compoud (Y) and a colorless gas (Z). X, Y and Z are:

$$
\begin{aligned}
& \text { A. } X=B H_{3}, Y=B H_{3} . N H_{3}, Z=N_{2} \\
& \text { B. } X=B_{2} H_{6}, Y=B_{3} N_{3} H_{6}, Z=H_{2} \\
& \text { C. } X=B_{2} H_{6}, Y=B_{6} H_{6}, Z=H_{2} \\
& \text { D. } X=B_{2} H_{6}, Y=B_{3} N_{3} H_{6}, Z=N_{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

