

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 1

Exercise

1. The locus of the centre of a circle, which touches the circles $\lvert z-z_1
vert = a$

and $|z-z_2|=b$ externally can be

A. an ellipse

B. a hyperbola

C. a circle

D. parabola

Answer:

2. Which of the following number (s) is/are rational?

A. $\sin 15^{\,\circ}$

B. $\cos 15^{\circ}$

C. $\sin 15^{\,\circ} \cos 15^{\,\circ}$

D. $\sin 15^{\circ} \cos 75^{\circ}$

Answer:

Watch Video Solution

3. From a fixed point A on the circumference of a circle of radius r, the perpendicular AY falls on the tangent at P. Find the maximum area of triangle APY.

B.
$$\frac{3\sqrt{3}}{4}r^{2}$$

C. $\frac{3\sqrt{3}}{8}r^{2}$
D. $\sqrt{3}r^{2}$

Watch Video Solution

4. Let $f \colon R o R$ be a function defined by $f(x) = \min \{x+1, |x|+1\},$

then which of the following is true?

A. f(x) is differentiable everywhere

B. f(x) is not differentiable at x=0

C. $f(x) \geq 1$ for all $x \in R$

D. f(x) is not differentiable at x=1

Answer:

5. Let $f\colon \mathbb{R} o \mathbb{R}, g\colon \mathbb{R} o \mathbb{R}$ and $h\colon \mathbb{R} o \mathbb{R}$ be differentiable functions such that $f(x)=x^3+3x+2, g(f(x))=x$ and h(g(g(x)))=x for all $x\in \mathbb{R}.$ Then,

A. g'(2)=1/15

B. h'(1)=666

C. h(g(3))=36

D. None of these

Answer:

Watch Video Solution

6. Two points P and Q are taken on the line joining the points A(0.0) and B(3a, 0) such that AP = PQ = QB. Circles are drawn on AP, PQ and QB as diameters. The locus of the point S from which, the

sum of squares of the lengths of the tangents to the three circles is equal to $b^2 \mbox{ is }$

A.
$$x^2 + y^2 - 3ax + 2a^2 - b^2 = 0$$

B. $3(x^2 + y^2) - 9ax + 8a^2 - b^2 = 0$
C. $x^2 + y^2 - 5ax + 6a^2 - b^2 = 0$
D. $x^2 + y^2 - ax - b^2 = 0$

Answer:

Watch Video Solution

 $P = ig\{ heta\!:\!\sin heta-\cos heta=\sqrt{2}\cos hetaig\} ext{ and } Q = ig\{ heta\!:\!\sin heta+\cos heta=\sqrt{2}\sin hetaig\}$

be two sets. Then

$$\mathsf{A}.\, P \subset Q \; \text{ and } \; Q - P \neq \phi$$

 $\mathrm{B.}\,Q\subset P$

 $\mathsf{C}.\,P\subset Q$

Let

D. P=Q

Answer:

Watch Video Solution

8. If the focus of the parabola $\left(y-k
ight)^2=4(x-h)$ always lies between

the lines x + y = 1 and x + y = 3, then

A. Olth+klt2

B. Olth+klt1

C. 1lth+klt2

D. 1lth+klt3

Answer:

9. Let us define a region R is xy-plane as a set of points (x,y) satisfying $[x^2] = [y]$ (where [x] denotes greatest integer $\leq x$),then the region R defines

A. a parabola whose axis is horizontal

B. a parabola whose axis is vertical

C. integer point of the parabola $y=x^2$

D. None of these

Answer:

Watch Video Solution

10. The chance that doctor A will diagnose disease X correctly is 60%. The chance that a parient of doctor A dies after correct treatment is 75% while it is 80% after wrong diagnosis. A patient of doctor A having disease X dies. The probability that his disease is correctly diagnosed is

A.
$$\frac{8}{17}$$

B. $\frac{9}{17}$
C. $\frac{11}{17}$
D. $\frac{6}{17}$

Watch Video Solution

11. Let $f: \{x, y, z\} \to \{1, 2, 3\}$ be a one-one mapping such that only one of the following three statements is true and remaining two are false: $f(x) \neq 2, f(y) = 3, f(z) \neq 1$,then-

A. f(x)gtf(y)gtf(z)

B. f(x)ltf(y)ltf(z)

C. f(y)ltf(x)ltf(z)

D. f(y)ltf(z)ltf(x)

12. For hyperbola
$$rac{x^2}{\cos^2 lpha} - rac{y^2}{\sin^2 lpha} = 1$$
 which of the following remains

constant with change in α

A. abscissa of vertices

B. abscissa of foci

C. eccentricity

D. directrix

Answer:

13. The equation `2cos^2x/2sin^2x=x^2+x^(-2);0

A. no real solution

B. one real solution

C. more than one solution

D. none of these

Answer:

Watch Video Solution

14. The value of
$$\int_{\pi}^{2\pi} [2\sin x] dx$$
 where $[.]$ represents the greatest integer

function is

A.
$$rac{-5\pi}{3}$$
B. $-\pi$

C.
$$\frac{5\pi}{3}$$

$$\mathsf{D.} - 2\pi$$

Answer:

15. If
$$f(x) = x^3 + 3x^2 + 6x + 2\sin x$$
 then the equation
 $\frac{1}{x - f(1)} + \frac{2}{x - f(2)} + \frac{3}{x - f(3)} = 0$ has

A. No real roots

B.1 real roots

C. 2 real roots

D. More than 2 real roots

Answer:

Watch Video Solution

16. If f and g are two continuous functions being even and and odd, respectively, then $\int_{-a}^{a} \frac{f(x)}{b^{g(x)+1}} dx$ is equal to (a being any non-zero number and b is positive real number, $b \neq 1$)

A. independent of f

B. independent of g

C. independent of both f and g

D. none of these

Answer:

Watch Video Solution

17. A determinant of the second order is made with the elements 0 and 1. If $\frac{m}{n}$ be the probability that the determinant made is non negative, where m and n are relative primes, then the value of n-m is

A. 4

B. 3

C. 5

D. 8

> Watch Video Solution

18. Let $f: [0, \infty) \overrightarrow{0, \infty} andg: [0, \infty) \overrightarrow{0, \infty}$ be non-increasing and nondecreasing functions, respectively, and h(x) = g(f(x)). If fandg are differentiable functions, h(x) = g(f(x)). If fandg are differentiable for all points in their respective domains and h(0) = 0, then show h(x) is always, identically zero.

A.
$$h(x)=0\,orall x\geq 0$$

$$\mathsf{B}.\,h(x)>0\,\forall x> \ \neq 0$$

$$\mathsf{C}.\,h(x)<0\,\forall x>~\neq 0$$

D. None of these

Answer:

19. The number of such points $(a+1,\sqrt{3}a)$, where a is any integer, lying inside the region bounded by the circles $x^2+y^2-2x-3=0$ and $x^2+y^2-2x-15=0$, is

A. 2

B. 1

C. 3

D. 0

Answer:

Watch Video Solution

20. If $x^4 + px^3 + qx^2 + rx + 5 = 0$ has four positive roots, then the

minimum value of pr is equal to

A. 5

B. 25

C. 80

D. 100

Answer:

Watch Video Solution

21. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 and x=b is (b-1) $\sin(3b+4)$, then-

A. (x-1)cos(3x+4)

B. sin(3x+4)

C. sin(3x+4)+3(x-1)cos(3x+4)

D. None of these

Answer:

22. Let n be a positive integer such that $\frac{\sin\pi}{2n}+\frac{\cos\pi}{2n}=\frac{\sqrt{n}}{2}.$ Then $6\leq n\leq 8$ (b) '4 A. $6\leq n\leq 8$

 $\texttt{B.} 4 < n \leftarrow 8$

 $\mathsf{C.4} \leq n \leq 8$

 $\mathsf{D.4} < n < 8$

Answer:

Watch Video Solution

23. The value of
$$Lt_{x
ightarrow 0}\left\{rac{\int_{0}^{x^2}\sec^2tdt}{x\sin x}
ight\}$$
 is (A) 0 (B) 3 (C) 2 (D) 1

A. 0

B. 3

C. 2

> Watch Video Solution

24. Tangents are drawn to the circle $x^2 + y^2 = 50$ from a point 'P' lying on the x-axis. These tangents meet the y-axis at points P_1 ' and P_2 '. Possible coordinates of 'P' so that area of triangle PP_1P_2 is minimum , is/are

- A. (10,0)
- B. $(10\sqrt{2}, 0)$
- $\mathsf{C}.\,\big(-10\sqrt{2},0\big)$
- D. None of these

Answer:

25. LEt $F: R \rightarrow R$ is a differntiable function f(x + 2y) = f(x) + f(2y) + 4xy for all $x, y \in R$ A. f'(1)=f'(0)+1 B. f'(1)=f'(0)-1 C. f'(0)=f'(1)+2 D. f'(0)=f'(1)-2

Answer:

Watch Video Solution

26. If $|z-1|+|z+3|\leq 8$, then the range of values of |z-4| is

A. 1(0,7)

B. `(1,8)

C. (1,9)

D. (2,5)

27. Statement-1 : If $a_1, a_2, a_3,$ a_n are positive real numbers , whose product is a fixed number c, then the minimum value of $a_1 + a_2 + \ldots + a_{n-1} + 2a_n$ is $n(2C)^{\frac{1}{n}}$

Statement-2 : A.M. \geq G.M.

A. $n(2c)^{1/n}$ B. $(n+1)c^{1/n}$ C. $2nc^{1/n}$

D.
$$(n+1)(2c)^{1/n}$$

Answer:

28. Let
$$S_n=\sum_{k=1}^{4n}{(-1)^{rac{k(k+1)}{2}}k^2}.$$
 Then S_n can take values

A. 1056

B. 1088

C. 1120

D. None of these

Answer:

Watch Video Solution

29. The triangle PQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have co-ordinates(3,4) and(-4, 3) respectively, then $\angle QPR$ is equal to

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$

Watch Video Solution

30. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle R. The eccentricity of the ellipse E_2 is $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$ A. $\frac{\sqrt{2}}{2}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{1}{2}$

 $\mathsf{D}.\,\frac{3}{4}$

Answer:

31. The smaller radius of the sphere passing through (1, 0,0),(0,1,0) and (0,0, 1)is:

A.
$$\sqrt{\frac{3}{5}}$$

B. $\sqrt{\frac{3}{8}}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{5}{12}}$

Answer:

32. The number of real values of the parameter k for which $(\log_{16} x)^2 - (\log)_{16} x + (\log)_{16} k = 0$ with real coefficients will have exactly one solution is 2 (b) 1 (c) 4 (d) none of these

A. 0

B. 2

C. 1

D. 4

Answer:

Watch Video Solution

33. Let S be the set of complex number a which satisfyndof $\log_{\frac{1}{3}} \left\{ \log_{\frac{1}{2}} \left(|z|^2 + 4|z| + 3 \right) \right\} < 0$, then S is (where $i = \sqrt{-1}$)

A. [-1,3]

- $\mathsf{B}.\left\{z\!:\!Re(z)\geq 1\right\}$
- C. $\{z\!:\!i(z)\leq 2\}$

D. All ofthese

Answer:

34.
$$(\lim_{x \to 0} \left[\min \left(y^2 - 4y + 11 \right) \frac{\sin x}{x} \right] (where[.]de \neg esthe \text{ greatest}$$

integer function is 5 (b) 6 (c) 7 (d) does not exist

A. 5

B. 6

C. 7

D. does not exist

Answer:

Watch Video Solution

35. If P(x) is a polynomial of the least degree that has a maximum equal to 6 at x = 1, and a minimum equalto 2 at x = 3,then $\int_0^1 P(x) dx$ equals:

A.
$$\frac{17}{4}$$

B. $\frac{13}{4}$

C.
$$\frac{19}{4}$$

D. $\frac{5}{4}$

36. if
$$10! = 2^p 3^q 5^r 7^s$$
 then

A. p=7

B. q=4

C. r=3

D. s=2

Answer:

37. Show that the height of the cylinder of maximum volume that can be

inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$.

A. 2a/3

B.
$$\frac{2a}{\sqrt{3}}$$

D. a/5

Answer:

Watch Video Solution

38. If
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 + \left(\overrightarrow{a}, \overrightarrow{b}\right)^2$$
 = 676 and $\left|\overrightarrow{b}\right| = 2$, then $\left|\overrightarrow{a}\right|$ is equal to

A. 13

B. 26

C. 39

D. None of these

Answer:

Watch Video Solution

39. The equation
$$\frac{x^2}{1-r} - \frac{y^2}{1+r} = 1, r > 1$$
, represents an ellipse (b) a hyperbola a circle (d) none of these

A. an ellipse

B. a hyperbola

C. a circle

D. None of these

Answer:

40. The graph of the function, $\cos x \cos(x+2) - \cos^2(x+1)$ is

A. A straight line passing through (0,0)

B. A straight line passing through $\left(rac{\pi}{2},\ -\sin^2 1
ight)$ and paralles to x-

axis

C. A straight line passing through (0, \sin^2 1)

D. not a straight line

Answer:

Watch Video Solution

41. If
$$f(x) = \cos \Big\{ rac{\pi}{2} [x] - x^3 \Big\}, 1 < x < 2$$
, and [x] denotes the greatest

integer less than or equal to x, then the value of

$$f'\left(\sqrt[3]{\frac{\pi}{2}}\right)$$
, is

A. 0

B. 1

$$\mathsf{C}.\,\frac{1}{2}$$
$$\mathsf{D}.\,\frac{1}{\sqrt{2}}$$

$$1+|e^x-1|=e^x(e^x-2)$$
 is :

A. 0

B. 1

C. 2

D. infinitely many

Answer:

43. If 2x - y + 1 = 0 is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$ then which of the following CANNOT be sides of a right angled triangle? a, 4, 2 (b) a, 4, 12a, 4, 1 (d) 2a, 8, 1

A. a,4,1

B. a,4, 2

C. 2a,8,1

D. 2a,4,1

Answer:

44. If the equation
$$rac{x^2}{3} - 4x + 13 = \sin \Bigl(rac{a}{x}\Bigr)$$
 has a solution then a is equal to

A.
$$(2n+1)rac{\pi}{2}$$

B. $3(4n+1)rac{\pi}{2}$

 $\mathsf{C.}\, 3(1+4n)\pi$

D. None of these

Answer:

45. If m be the slope of common tangent of $y = x^2 - x + 1$ and $y = x^2 - 3x + 1.$ Then m is equal to

A. 2

B. -1

C.
$$\frac{1}{2}$$

D. -2

Answer:

46. If $S_n = {}^n C_0 {}^n C_1 + {}^n C_1 {}^n C_2 + \dots + {}^n C_{n-1} {}^n C_n$ and if $\frac{S_{n+1}}{S_n} = \frac{15}{4}$, then the sum of all possible values of n is (A) 2 (B) 4 (C) 6 (D) 8

A. 3

B. 6

C. 7

D. 5

Answer:

47. The value of integrals
$$\int_{-2}^{2} \max \{x + |x|, x - [x]\} dx$$
 where [.] represents the greatest integer function is

A. 4

B. 5

C.
$$\frac{7}{2}$$

D. $\frac{9}{4}$

Watch Video Solution

48. One hundred identical coins, each with probability 'p' of showing heads are tossed once. If 0 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of p is

A.
$$\frac{1}{2}$$

B. $\frac{49}{101}$
C. $\frac{50}{101}$
D. $\frac{51}{101}$

Answer:

49. If ω is a complex nth root of unity, then $\sum_{r=1}^n (a+b) \omega^{r-1}$ is equal to

$$rac{n(n+1)a}{2}$$
 b. $rac{nb}{1+n}$ c. $rac{na}{\omega-1}$ d. none of these

A.
$$rac{n(n+1)a}{2\omega}$$

B. $rac{nb}{1-n}$

C.
$$\frac{na}{\omega - 1}$$

D. None of these

Answer:

Watch Video Solution

50. If
$$f(n+1)=rac{1}{2}igg\{f(n)+rac{9}{f(n)}igg\},n\in N,$$
 and

 $f(n)>0f \,\, {
m or} \,\, al\ln \in N, ext{ then find } (\lim)_{n \, \overline{\infty}} f(n) \cdot$

B. $\frac{3}{2}$ C. $\frac{1}{2}$

D. not finite

Answer:

Watch Video Solution

51. An arch way is in the shape of a semi-ellipse, the road level being the major axis. If the breadth of the arch way is 30 feet and a man 6 feet tall just touches the top when 2 feet from the side, find the greatest height of the arch.

A. 10 B. 8 C. 6

D. 5

52. Let f(x) be positive, continuous, and differentiable on the interval $(a, b)and(\lim_{x \to a^+} f(x) = 1, (\lim_{x \to b^-} f(x) = 3^{\frac{1}{4}} \dot{I} f f'(x) \ge f^3(x) + \frac{1}{f(x)}$ then the greatest value of b - a is $\frac{\pi}{48}$ (b) $\frac{\pi}{36} \frac{\pi}{24}$ (d) $\frac{\pi}{12}$

A. 1

B. $3^{1/4}$ C. $\left(3^{1/4} - 1\right) \frac{\pi}{24}$ D. $\frac{\pi}{24}$

Answer: