

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 10

Exercise

1. Statement-1 : If $a_1,a_2,a_3,$ a_n are positive real numbers , whose product is a fixed number c, then the minimum value of $a_1+a_2+\ldots +a_{n-1}+2a_n$ is $n(2C)^{\frac{1}{n}}$

Statement-2 :A.M. \geq G.M.

A.
$$n(2c)^{1/n}$$

B.
$$(n+1)c^{1/n}$$

C.
$$2nc^{1/n}$$

D.
$$(n+1)(2c)^{1/n}$$

Watch Video Solution

- **2.** Let $S_n = \sum_{k=1}^{4n} \left(-1
 ight)^{rac{k(k+1)}{2}} k^2.$ Then S_n can take values
 - A. 1056
 - B. 1088
 - C. 1120
 - D. None of these

Answer:

3. The triangle PQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have co-ordinates(3,4) and(-4, 3) respectively, then $\angle QPR$ is equal to

A.
$$\frac{\pi}{2}$$

$$\mathsf{B.}\;\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{\pi}{6}$$

Answer:

Watch Video Solution

4. The ellipse E_1 : $\frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle R. The eccentricity of the ellipse E_2 is $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$

A.
$$\frac{\sqrt{2}}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

- $\mathsf{C.}\,\frac{1}{2}$ D. $\frac{3}{4}$

Watch Video Solution

- 5. The smaller radius of the sphere passing through (1, 0,0),(0,1,0) and (0,0,
- 1)is:
 - A. $\sqrt{\frac{3}{5}}$
 - B. $\sqrt{\frac{3}{8}}$

 - D. $\sqrt{\frac{5}{12}}$

Answer:

6. The number of real values of the parameter k for which $(\log_{16} x)^2 - (\log)_{16} x + (\log)_{16} k = 0$ with real coefficients will have exactly one solution is 2 (b) 1 (c) 4 (d) none of these

A. 0

B. 2

C. 1

D. 4

Answer:

Watch Video Solution

7. Let S be the set of complex number a which satisfyndof $\log_{\frac{1}{3}}\Bigl\{\log_{\frac{1}{2}}\Bigl(|z|^2+4|z|+3\Bigr)\Bigr\}< 0$, then S is (where $i=\sqrt{-1}$)

A. [-1,3]

B. $\{z : Re(z) > 1\}$

C. $\{z : i(z) \leq 2\}$

D. All ofthese

Answer:

Watch Video Solution

8. $(\lim)_{x \to 0} \left[\min \left(y^2 - 4y + 11 \right) \frac{\sin x}{x} \right] (where[.]de \neg esthe greatest)$

integer function is 5 (b) 6 (c) 7 (d) does not exist

A. 5

B. 6

C. 7

D. does not exist

Answer:

9. If P(x) is a polynomial of the least degree that has a maximum equal to 6 at x=1, and a minimum equal o 2 at x=3,then $\int_0^1 P(x)dx$ equals:

$$\mathsf{A.}\ \frac{17}{4}$$

$$\operatorname{B.}\frac{13}{4}$$

$$\mathsf{C.}\ \frac{19}{4}$$

D.
$$\frac{5}{4}$$

Answer:

Watch Video Solution

10. if $10! = 2^p 3^q 5^r 7^s$ then

A. p=7

B.q=4

_	_
C.	r=3

Watch Video Solution

11. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$.

A. 2a/3

 $\text{B. } \frac{2a}{\sqrt{3}}$

C. a/3

D. a/5

Answer:

12. If
$$(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a}.\overrightarrow{b})^2$$
 = 676 and $|\overrightarrow{b}| = 2$, then $|\overrightarrow{a}|$ is equal to

- A. 13
- B. 26
- C. 39
- D. None of these

- **13.** The equation $\frac{x^2}{1-r}-\frac{y^2}{1+r}=1, r>1$, represents an ellipse (b) a hyperbola a circle (d) none of these
 - A. an ellipse
 - B. a hyperbola
 - C. a circle
 - D. None of these

Watch Video Solution

- **14.** The graph of the function, $\cos x \cos(x+2) \cos^2(x+1)$ is
 - A. A straight line passing through (0,0)
 - B. A straight line passing through $\left(rac{\pi}{2},\ -\sin^2 1
 ight)$ and paralles to x-

axis

- C. A straight line passing through (0, \sin^2 1)
- D. not a straight line

Answer:

Watch Video Solution

15. If $f(x)=\cos\Bigl\{\frac{\pi}{2}[x]-x^3\Bigr\}, 1< x< 2$, and [x] denotes the greatest integer less than or equal to x, then the value of

C.
$$\frac{1}{2}$$
D. $\frac{1}{\sqrt{2}}$

Watch Video Solution

number of real solutions of the equation

- 16. The $|1+|e^x-1|=e^x(e^x-2)$ is :

 - A. 0
 - B. 1

C. 2

- D. infinitely many

Watch Video Solution

(b) a, 4, 12a, 4, 1 (d) 2a, 8, 1

17. If 2x-y+1=0 is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{16}=1$ then which of the following CANNOT be sides of a right angled triangle? a,4,2

- A. a,4,1
- B. a,4, 2
- C. 2a,8,1
- D. 2a,4,1

Answer:

18. If the equation $\frac{x^2}{3}-4x+13=\sin\Bigl(\frac{a}{x}\Bigr)$ has a solution then a is equal to

A.
$$(2n+1)rac{\pi}{2}$$

$$\texttt{B.}\,3(4n+1)\frac{\pi}{2}$$

C. $3(1+4n)\pi$

D. None of these

Answer:

- **19.** If m be the slope of common tangent of $y=x^2-x+1$ and $y=x^2-3x+1$. Then m is equal to
 - A. 2
 - B. -1
 - $\mathsf{C.}\ \frac{1}{2}$

Watch Video Solution

- **20.** If $S_n=^nC_0.^nC_1+^nC_1.^nC_2+\dots..+^nC_{n-1}.^nC_n$ and if $\frac{S_{n+1}}{S_n}=\frac{15}{4}$, then the sum of all possible values of n is (A) 2 (B) 4 (C) 6
- (D) 8
 - A. 3
 - B. 6
 - C. 7
 - D. 5

Answer:

21. The value of integrals
$$\int_{-2}^{2} \max \{x + |x|, x - [x]\} dx$$
 where [.] represents the greatest integer function is

A. 4

B. 5

 $\mathsf{C.}\,\frac{7}{2}$

D. $\frac{9}{4}$

Answer:

heads are tossed once. If 0 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of p is

22. One hundred identical coins, each with probability 'p' of showing

B. $\frac{49}{101}$

C.
$$\frac{50}{101}$$

D. $\frac{51}{101}$

Answer:

Watch Video Solution

23. If ω is a complex nth root of unity, then $\sum_{i=1}^{n}{(a+b)\omega^{r-1}}$ is equal to

$$rac{n(n+1)a}{2}$$
 b. $rac{nb}{1+n}$ c. $rac{na}{\omega-1}$ d. none of these

A.
$$rac{n(n+1)a}{2\omega}$$

B.
$$\frac{nb}{1-n}$$

C.
$$\frac{na}{\omega - 1}$$

D. None of these

Answer:

$$f(n+1)=rac{1}{2}igg\{f(n)+rac{9}{f(n)}igg\}, n\in N,$$

and

 $f(n)>0 f \,\, {
m or} \,\, al \ln \in N, \,\, {
m then \,\, find \,\, } (\lim)_{n \stackrel{\longrightarrow}{\infty}} f(n) \cdot$

A. 3

lf

- B. $\frac{3}{2}$
- c. $\frac{1}{2}$

D. not finite

Answer:

Watch Video Solution

25. An arch way is in the shape of a semi-ellipse, the road level being the major axis. If the breadth of the arch way is 30 feet and a man 6 feet tall just touches the top when 2 feet from the side, find the greatest height of the arch.

A. 10

B. 8

C. 6

D. 5

Answer:

Watch Video Solution

26. Let
$$f(x)$$
 be positive, continuous, and differentiable on the interval

$$(a,b)and(\lim)_{x\stackrel{
ightarrow}{a}^+}f(x)=1, (\lim)_{x\stackrel{
ightarrow}{b}^-}f(x)=3^{rac{1}{4}}\dot{I}ff'(x)\geq f^3(x)+rac{1}{f(x)}$$
 then the greatest value of $b-a$ is $rac{\pi}{48}$ (b) $rac{\pi}{36}$ $rac{\pi}{24}$ (d) $rac{\pi}{12}$

A. 1

B. $3^{1/4}$

C. $(3^{1/4}-1)\frac{\pi}{24}$ D. $\frac{\pi}{24}$

Answer:

