©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 3

Exercise

1. Find the values of α for which the point
$(\alpha-1, \alpha+1)$ lies in the larger segment of the circle $x^{2}+y^{2}-x-y-6=0$ made by the chord whose equation is $x+y-2=0$
A. 0
B. 1
C. 2

D. None of these

Answer:

- Watch Video Solution

2. Let $1 \leq m<n \leq p$. The number of subsets o the set $A=\{1,2,3, \ldots P\}$ having m, n as the least and the greatest elements respectively, is

$$
\text { A. } 2^{n-m-1}-1
$$

B. 2^{n-m-1}
C. 2^{n-m}

D. None of these

Answer:

D Watch Video Solution

3. Let $f: R \vec{R}$ be a continuous function which satisfies
$f(x)=\int_{0}^{x} f(t) d t$. Then the value of $f(1 n 5)$ is
A. -2
B. 3
C. -1

$$
\text { D. } 0
$$

Answer:

D Watch Video Solution

4. Two numbers a and b are chosen at random from
the set $\{1,2,3, ., 3 n\}$. The probability that $a^{2}+b^{2}$ is
divisible by 3 , is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{n}$
D. $\frac{n-1}{3 n}$

Answer:

- Watch Video Solution

5. The line $2 p x+y \sqrt{1-p^{2}}=1(|p|<1) \quad$ for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The locus of the point of intersection of prependicular tangents of the ellipse is
A. An ellipse of eccentricity $\frac{2}{\sqrt{3}}$
B. An ellipse of eccentricity $\frac{\sqrt{3}}{2}$
C. Hyperbola of eccentricity 2

D. a hyperbola eccentricity $\sqrt{2}$

Answer:

D Watch Video Solution

6. If $f: R \rightarrow R, g, R \rightarrow R$ be two funcitons, and $h(x)=2 \min \{f(x)-g(x), 0\}$ then $h(x)=$
A. $f(x)+g(x)-|g(x)-f(x)|$
B. $f(x)+g(x)+|g(x)-f(x)|$
C. $f(x)-g(x)+|g(x)-f(x)|$
```
D. \(f(x)-g(x)-|g(x)-f(x)|\)
```


Answer:

- Watch Video Solution

7. The area bounded by the curves

$$
y=|x|-1 \text { and } y=-|x|+1 \text { is } 1 \text { b. } 2 \text { c. } 2 \sqrt{2} \text { d. } 4
$$

A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

- Watch Video Solution

8. A function $\phi(x)$ satisfies the functional equation $x^{2} \phi(x)+\phi(1-x)=2 x-x^{4}$ for all real x. Then $\phi(x)$ is given by
A. x^{2}
B. $1-x^{2}$
C. $1+x^{2}$
D. $x^{2}+x+1$

Answer:

D Watch Video Solution

9. If n is a natural number,then
A. $1^{2}+2^{2}+\ldots .+n^{2}<\frac{n^{3}}{3}$
B. $1^{2}+2^{2}+\ldots .+n^{2}=\frac{n^{3}}{3}$
C. $1^{2}+2^{2}+\ldots .+n^{2}>n^{3}$
D. $1^{2}+2^{2}+\ldots .+n^{2}>\frac{n^{3}}{3}$

Answer:

10.

$S_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+n k+k^{2}}$ and $T_{n}=\sum_{k=0}^{n-1} \frac{n}{n^{2}+n k+k^{2}}$
for $n=1,1,2,3 \ldots$, they
A. $S_{n}<\frac{\pi}{3 \sqrt{3}}$
B. $S_{n}>\frac{\pi}{3 \sqrt{3}}$
C. $T_{n}<\frac{\pi}{3 \sqrt{3}}$
D. $T_{n} \geq \frac{\pi}{3 \sqrt{3}}$

Answer:
11. Two friends visit a restaurant randomly during 5 pm to 6 pm . Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is :

$$
\begin{aligned}
& \text { A. } \frac{1}{4} \\
& \text { B. } \frac{1}{16} \\
& \text { C. } \frac{7}{16} \\
& \text { D. } \frac{9}{16}
\end{aligned}
$$

Answer:

12. For any $n \in N$, the value of the expression
$\sqrt{2+\sqrt{2+\sqrt{2+\ldots \ldots \ldots . n \times}}}$ is
A. $2 \cos \left(\frac{\pi}{2^{n+1}}\right)$
B. $2 \sin \left(\frac{\pi}{2^{n+1}}\right)$
C. $\sqrt{2} \cos \left(2^{n+1} \pi\right)$
D. None of these

Answer:

- Watch Video Solution

13. If a, b and c are distinct positive numbers, then
$(a+b-c)(b+c-a)(c+a-b)-a b c$ is:
A. positive
B. negative
C. non-positive

D. non-negative

Answer:

- Watch Video Solution

14. The general value of θ satisfying the equation $2 \sin ^{2} \theta-3 \sin \theta-2=0$ is
A. $n \pi+(-1)^{n} \pi / 6$
B. $n \pi+(-1)^{n} \pi / 2$
C. $n \pi+(-1)^{n}(5 \pi) / 6$
D. $n \pi+(-1)^{n}(7 \pi) / 6$

Answer:

- Watch Video Solution

15. For 3×3 matrices M and N, which of the following statement(s) is/are not correct?
A. $N^{T} M N \quad$ is
is symmetric
symmetric,according as M is symmetric or skew
symmetric
B. MN-NM is skew symmetric for all symmetric matrices M and N
C. MN is symmetric for all symmetric matrices M
and N
D. None of these

Answer:
16.

$$
\left(m x^{2}+3 x+4+2 x\right) /\left(x^{2}+2 x+2\right)<5
$$

satisfied for all $x \in R$, then find the value of m.
A. 1ltmlt5
B. -1ltmlt1
C. $-5<m<\frac{11}{24}$
D. $m<\frac{71}{24}$

Answer:

17. If $f(x)=g\left(x^{3}\right)+x h\left(x^{3}\right)$ is divisiblel by $x^{2}+x+1$, then
A. both $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are divisible by $(\mathrm{x}-1)$
B. $h(x)$ is divisible but $g(x)$ is not divisible $x-1$
C. $g(x)$ is divisible but $h(x)$ is not divisible $x-1$
D. None of these

Answer:

- Watch Video Solution

18. The area of the trapezium whose vertices lie on
the parabola $y^{2}=4 x$ and its diagonals pass through $(1,0)$ and having length $\frac{25}{4}$ units each is
A. 75/4
B. $73 / 4$
C. $75 / 2$
D. $70 / 3$

Answer:
19. A person goes to office either by car, scooter, bus or train probability of which being $\frac{1}{7}, \frac{3}{7}, \frac{2}{7}$ and $\frac{1}{7}$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $\frac{2}{9}, \frac{1}{9}, \frac{4}{9}$ and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car?
A. $\frac{1}{7}$
B. $\frac{2}{7}$
C. $\frac{6}{7}$
D. $\frac{5}{7}$

Answer:

- Watch Video Solution

20. The line $x+y=1$ meets X -axis at A and Y -axis at
B, P is the mid-point of $A B, P_{1}$ is the foot ofperpendicular from P to $O A, M_{1}$, is that of P_{1},
from $O P ; P_{2}$, is that of M_{1} from $O A, M_{2}$, is that of
P_{2}, from $O P ; P_{3}$ is that of M_{2}, from OA and so on. If
P_{n} denotes the nth foot of the perpendicular on OA, then find $O P_{n}$.
A. $\left(\frac{1}{2}\right)^{n-1}$
B. $\left(\frac{1}{2}\right)^{n}$
C. $\left(\frac{1}{2}\right)^{n+1}$

D. None of these

Answer:

D Watch Video Solution

21. If x, y and z are three real numbers such that
$x+y+z=4$ and $x^{2}+y^{2}+z^{2}=6$, then show that
each of x, y and z lie in the closed interval $\left[\frac{2}{3}, 2\right]$
A. [2/3,2]
B. $[0,2 / 3]$
C. $[0,2]$
D. $[-1 / 3,2 / 3]$

Answer:

- Watch Video Solution

22. A variable point P on the ellipse of eccentricity e is joined to the foci S and S^{\prime}. The eccentricity of the locus of incentre of the triangle $P S S^{\prime}$ is (A) $\sqrt{\frac{2 e}{1+e}}$
(B)
$\sqrt{\frac{e}{1+e}}$ (C)
(C) $\sqrt{\frac{1-e}{1+e}}$
(D) $\frac{e}{2(1+e)}$
A. 5
B. 2
C. 1
D. -1

Answer:

- Watch Video Solution

23. Let z, z_{0} be two complex numbers z_{0} being the cojugate of z_{0}. The numbers $z, z_{0}, z \bar{z}_{0}, 1$ and 0 are represented in argand diagram by $P, P_{0}, \mathrm{Q}, \mathrm{A}$ and origin respectively. If $|z|=1$, then (A) $\triangle P O P_{0}$ and
$\triangle A O Q$ are congruent (B) $\left|z-z_{0}\right|=\left|z \bar{z}_{0}-1\right|$ (C) $\left|z-z_{0}\right|=\frac{1}{2}\left|z \bar{z}_{0}-1\right|$ (D)none of these
A. Only I is true

B. Only II is true

C. Both I \& II are true

D. Both I \& II are false

Answer:

- Watch Video Solution

24. A person throws dice, one the common cube and the other reglowest terahedron, the number on the lowest face being taken in the case of a tetrahedron.

The chance that the sum of numbers throws is not less than 5 is
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{5}{6}$

Answer:

- Watch Video Solution

25. The integers x, y and z each are perfect squares
and $x>y>z>0$.If x, y, z form an A.P. and $x+y+z=75$, then
the smallest possible value of x is
A. 39
B. 31
C. 41
D. 49

Answer:

- Watch Video Solution

26. let $A_{1}, A_{2}, A_{3}, \ldots A_{n}$ are the vertices of a regular n sided polygon inscribed in a circle of radius R . If
$\left(A_{1} A_{2}\right)^{2}+\left(A_{1} A_{3}\right)^{2}+\ldots .\left(A_{1} A_{n}\right)^{2}=14 R^{2}$ then find the number of sides in the polygon.
A. 3
B. 4
C. 5
D. None of these

Answer:
27. If p, q, r, s are in A.P.and
$f(x)=\left|\begin{array}{ccc}p+\sin x & q+\sin x & p-r+\sin x \\ q+\sin x & r+\sin x & -1+\sin x \\ r+\sin x & s+\sin x & s-q+\sin x\end{array}\right|$ such
that $\int_{0}^{2} f(x) d x=-4$ then the common difference of the A.P. can be : (A) 1 (B) 3/2 (C) -1 (D) 3
A. ± 1
B. $\frac{1}{2}$
C. ± 2
D. None of these

Answer:
\square

