

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 3

Exercise

1. Find the values of α for which the point $(\alpha - 1, \alpha + 1)$ lies in the larger segment of the circle $x^2 + y^2 - x - y - 6 = 0$ made by the chord whose equation is x + y - 2 = 0

A. 0

B. 1

C. 2

D. None of these

Answer:

Watch Video Solution

2. Let $1 \le m < n \le p$. The number of subsets o the set $A = \{1, 2, 3, \dots P\}$ having m, n as the least and the greatest elements respectively, is

A. $2^{n-m-1} - 1$

B. 2^{n-m-1}

 $\mathsf{C.}\, 2^{n\,-\,m}$

D. None of these

Answer:

Watch Video Solution

3. Let
$$f: R \overset{
ightarrow}{R}$$
 be a continuous function which satisfies $f(x)=\int_0^x f(t) dt$. Then the value of $f(1n5)$ is_____

A. -2

B. 3

C. -1

D. 0

Answer:

4. Two numbers a and b are chosen at random from the set {1,2,3,..,3n}. The probability that $a^2 + b^2$ is divisible by 3, is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. $\frac{3}{n}$

D.
$$rac{n-1}{3n}$$

Answer:

Watch Video Solution

5. The line
$$2px + y\sqrt{1 - p^2} = 1(|p| < 1)$$
 for
different values of p, touches a fixed ellipse whose
exes are the coordinate axes. Q. The locus of the
point of intersection of prependicular tangents of
the ellipse is

A. An ellipse of eccentricity $\frac{2}{\sqrt{3}}$ B. An ellipse of eccentricity $\frac{\sqrt{3}}{2}$ C. Hyperbola of eccentricity 2

D. a hyperbola eccentricity $\sqrt{2}$

Answer:

Watch Video Solution

6. If
$$f\!:\!R o R,g,R o R$$
 be two funcitons, and $h(x)=2{
m min}\{f(x)-g(x),0\}$ then $h(x)=$

A. f(x)+g(x)-|g(x)-f(x)|

B. f(x)+g(x)+|g(x)-f(x)|

C. f(x)-g(x)+|g(x)-f(x)|

D. f(x)-g(x)-|g(x)-f(x)|

Answer:

D. 4

Answer:

8. A function $\phi(x)$ satisfies the functional equation $x^2\phi(x) + \phi(1-x) = 2x - x^4$ for all real x. Then $\phi(x)$ is given by

A. x^2

B. $1 - x^2$

 $C.1 + x^2$

D. $x^2 + x + 1$

Answer:

9. If n is a natural number, then

Answer:

10.

 $S_n = \sum_{k=1}^n rac{n}{n^2 + nk + k^2} \, ext{ and } \, T_n = \sum_{k=0}^{n-1} rac{n}{n^2 + nk + k^2}$

for $n=1,1,2,3...,\,$ they

$$\begin{array}{l} \mathsf{A.}~S_n < \displaystyle \frac{\pi}{3\sqrt{3}} \\ \mathsf{B.}~S_n > \displaystyle \frac{\pi}{3\sqrt{3}} \\ \mathsf{C.}~T_n < \displaystyle \frac{\pi}{3\sqrt{3}} \\ \mathsf{D.}~T_n \geq \displaystyle \frac{\pi}{3\sqrt{3}} \end{array}$$

Answer:

Watch Video Solution

Let

11. Two friends visit a restaurant randomly during 5 pm to 6 pm . Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is :

A.
$$\frac{1}{4}$$

B. $\frac{1}{16}$
C. $\frac{7}{16}$
D. $\frac{9}{16}$

Answer:

Watch Video Solution

12. For any $n \in N$, the value of the expression

$$\sqrt{2+\sqrt{2+\sqrt{2+....n imes n imes }}}$$
 is

A.
$$2\cos\left(rac{\pi}{2^{n+1}}
ight)$$

B. $2\sin\left(rac{\pi}{2^{n+1}}
ight)$
C. $\sqrt{2}\cos\left(2^{n+1}\pi
ight)$

D. None of these

Answer:

13. If a, b and c are distinct positive numbers, then

the

expression

$$(a+b-c)(b+c-a)(c+a-b)-abc$$
 is:

A. positive

B. negative

C. non-positive

D. non-negative

Answer:

14. The general value of heta satisfying the equation $2\sin^2 heta-3\sin heta-2=0$ is

A.
$$n\pi + (-1)^n \pi/6$$

B. $n\pi + (-1)^n \pi/2$
C. $n\pi + (-1)^n (5\pi)/6$
D. $n\pi + (-1)^n (7\pi)/6$

Answer:

15. For 3×3 matrices M and N, which of the following statement(s) is/are not correct?

symmetric,according as M is symmetric or skew symmetric

B. MN-NM is skew symmetric for all symmetric

matrices M and N

C. MN is symmetric for all symmetric matrices M

and N

D. None of these

Answer:

Watch Video Solution

16. If the inequality
$$\left(mx^2+3x+4+2x
ight)/\left(x^2+2x+2
ight)<5$$
 is

satisfied for all $x \in R, ext{ then find the value of } m_{\cdot}$

A. 1ltmlt5

B. -1ltmlt1

C.
$$-5 < m < rac{11}{24}$$

D. $m < rac{71}{24}$

Answer:

Watch Video Solution

17. If $f(x) = gig(x^3ig) + xhig(x^3ig)$ is divisiblel by $x^2 + x + 1$, then

A. both g(x) and h(x) are divisible by (x-1)

B. h(x) is divisible but g(x) is not divisible x-1

C. g(x) is divisible but h(x) is not divisible x-1

D. None of these

Answer:

18. The area of the trapezium whose vertices lie on the parabola $y^2 = 4x$ and its diagonals pass through (1,0) and having length $\frac{25}{4}$ units each is

A. 75/4

B. 73/4

C. 75/2

D. 70/3

Answer:

19. A person goes to office either by car, scooter, bus or train probability of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ and $\frac{1}{7}$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car?

A.
$$\frac{1}{7}$$

B. $\frac{2}{7}$
C. $\frac{6}{7}$
D. $\frac{5}{7}$

Answer:

20. The line x + y = 1 meets X-axis at A and Y-axis at B,P is the mid-point of AB, P_1 is the foot ofperpendicular from P to OA, M_1 , is that of P_1 , from OP; P_2 , is that of M_1 from OA, M_2 , is that of P_2 , from OP; P_3 is that of M_2 , from OA and so on. If P_n denotes the nth foot of the perpendicular on OA, then find OP_n .

A.
$$\left(\frac{1}{2}\right)^{n-1}$$

B. $\left(\frac{1}{2}\right)^n$

$$\mathsf{C}.\left(\frac{1}{2}\right)^{n+1}$$

D. None of these

Answer:

Watch Video Solution

21. If x, y and z are three real numbers such that x + y + z = 4 and $x^2 + y^2 + z^2 = 6$, then show that each of x,y and z lie in the closed interval $\left[\frac{2}{3}, 2\right]$

A. [2/3,2]

B. [0,2/3]

C. [0,2]

D. [-1/3,2/3]

Answer:

22. A variable point P on the ellipse of eccentricity e is joined to the foci S and S'. The eccentricity of the locus of incentre of the triangle PSS' is (A) $\sqrt{\frac{2e}{1+e}}$ (B) $\sqrt{\frac{e}{1+e}}$ (C) $\sqrt{\frac{1-e}{1+e}}$ (D) $\frac{e}{2(1+e)}$

A. 5

B. 2

C. 1

D. -1

Answer:

> Watch Video Solution

23. Let z, z_0 be two complex numbers z_0 being the cojugate of z_0 . The numbers $z, z_0, z\bar{z}_0$,1 and 0 are represented in argand diagram by P, P_0 , Q, A and origin respectively. If |z| = 1, then (A) $\triangle POP_0$ and $\triangle AOQ$ are congruent (B) $|z - z_0| = |z\bar{z}_0 - 1|$ (C) $|z - z_0| = \frac{1}{2}|z\bar{z}_0 - 1|$ (D)none of these

A. Only I is true

B. Only II is true

C. Both I & II are true

D. Both I & II are false

Answer:

24. A person throws dice, one the common cube and the other reglowest terahedron, the number on the lowest face being taken in the case of a tetrahedron.

The chance that the sum of numbers throws is not

less than 5 is

A.
$$\frac{1}{4}$$

B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{5}{6}$

Answer:

25. The integers x,y and z each are perfect squares and x>y>z>0. If x,y,z form an A.P. and x+y+z=75, then

the smallest possible value of x is

A. 39

B. 31

C. 41

D. 49

Answer:

26. let $A_1, A_2, A_3, \dots A_n$ are the vertices of a regular n sided polygon inscribed in a circle of radius R. If

 $\left(A_{1}A_{2}
ight)^{2}+\left(A_{1}A_{3}
ight)^{2}+....\left(A_{1}A_{n}
ight)^{2}$ =14 R^{2} then find

the number of sides in the polygon.

A. 3

B. 4

C. 5

D. None of these

Answer:

27. If
$$p, q, r, s$$
 are in A.P.and

$$f(x) = \begin{vmatrix} p + \sin x & q + \sin x & p - r + \sin x \\ q + \sin x & r + \sin x & -1 + \sin x \\ r + \sin x & s + \sin x & s - q + \sin x \end{vmatrix}$$
 such
that $\int_0^2 f(x) dx = -4$ then the common difference

of the A.P. can be : (A) 1 (B) 3/2 (C) -1 (D) 3

A. ± 1

$$\mathsf{B.}\;\frac{1}{2}$$

 $\mathsf{C}.\pm 2$

D. None of these

Answer:

