©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 4

Exercise

1. If x and y co-ordinates of any point P are chosen
randomly from intervals $[0,2]$ and $[0,1]$ respectively, then the probability $y \leq x^{2}$ is (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{3}{4}$ (D) $\frac{1}{4}$
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{1}{4}$

Answer:

(D) Watch Video Solution

2. Which of the following result is valid?
A. $(1+x)^{n}>(1+n x)$,for all natural numbers n
B. $(1+x)^{n} \geq(1+n x)$,for all numbers n,where

$$
x>-1
$$

C. $(1+x)^{n} \leq(1+n x)$,for all natural numbers n
D. $(1+x)^{n}<(1+n x)$,for all natural numbers n

Answer:

- Watch Video Solution

3. Consider a circle with its centre lying on the focus of the parabola, $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then a point of intersection of the circle \& the parabola is:
A. $\left(\frac{p}{2}, p\right)$
B. $(2 p, 2 p)$
C. $\left(-\frac{p}{2}, p\right)$
D. $\left(-\frac{p}{8}, \frac{p}{2}\right)$

Answer:

- Watch Video Solution

4. A circle is given by $x^{2}+(y-1)^{2}=1$, another circle C touches it externally and also the x-axis, then the locus of center is:

$$
\begin{aligned}
& \text { A. }\left\{(x, y): x^{2}=4 y\right\} \cup\{(x, y): y \leq 0\} \\
& \text { B. }\left\{(x, y): x^{2}+(y-1)^{2}=4\right\} \cup\{(x, y): y \leq 0\} \\
& \text { C. }\left\{(x, y): x^{2}=y\right\} \cup\{(0, y): y \leq 0\} \\
& \text { D. }\left\{(x, y): x^{2}=4 y\right\} \cup\{(0, y): y \leq 0\}
\end{aligned}
$$

- Watch Video Solution

5. If p, q, r are any real numbers, then (A) $\max (p, q)<\max (p, q, r)$
$\min (p, q)=\frac{1}{2}(p+q-|p-q|)(\mathrm{C})$
$\max (p, q)<\min (p, q, r)$ (D) None of these
A. $\max (\mathrm{p}, \mathrm{q}) \operatorname{ltmax}(\mathrm{p}, \mathrm{q}, \mathrm{r})$
B. $\min (\mathrm{p}, \mathrm{q})=\frac{1}{2}(p+q-|p-q|)$
C. $\max (\mathrm{p}, \mathrm{q}) / \mathrm{tmin}(\mathrm{p}, \mathrm{q}, \mathrm{r})$
D. none of these

- Watch Video Solution

6. If $(\log)_{2}(a+b)+(\log)_{2}(c+d) \geq 4$. Then find the minimum value of the expression $a+b+c+$..
A. 2
B. 4
C. 8
D. 16

Answer:

7. If r_{1} and r_{2} are the distances of points on the curve $10(Z \bar{Z})-3 i\left(Z^{2}-(\bar{Z})^{2}\right)-16=0$ which are at maximum and minimum distance from the origin then the value of $r_{1}+r_{2}$
A. 4
B. 3
C. 2
D. None of these

Answer:
8. Let f be a real valued function satisfying $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+6)=\mathrm{f}(\mathrm{x}+3)+\mathrm{f}(\mathrm{x}+9)$. Then $\int_{x}^{x+12} f(t) d t$ is
A. a linear function of x
B. an exponential function of x
C. a constant function
D. None of these

Answer:

D Watch Video Solution

9. If $\left.a_{n}=\sqrt{7+\sqrt{7+\sqrt{7}+\ldots \ldots . .}}\right)$ having n radical
signs then by methods of mathematical induction which
is true
A. $a_{n}>7 \forall n \geq 1$
B. $a_{n}<7 \forall n \geq 1$
C. $a_{n}<4 \forall n \geq 1$
D. $a_{n}>3 \forall n \geq 1$

Answer:

- Watch Video Solution

10. Let $\sum_{r=1}^{n}\left(r^{4}\right)=f(n)$. Then $\sum_{r=1}^{n}(2 r-1)^{4}$ is equal to :
A. $\mathrm{f}(2 \mathrm{n})-16 \mathrm{f}(\mathrm{n})$ for all $n \in N$
B. $f(n)-16 f-\left(\frac{n-1}{2}\right)$ when n is odd
C. $f(n)-16 f(n / 2)$ when n is even
D. None of these

Answer:

- Watch Video Solution

11. A hat contains a number of cards with 30% white on both sides, 50% black on one side and whit e on the other side, 20% black on both sides. The cards are mixed up, and a single card is drawn at random and placed on the table. Its upper side shows up black. The probability that its other side is also black is $2 / 9 \mathrm{~b} .4 / 9 \mathrm{c} .2 / 3 \mathrm{~d}$.
$2 / 7$
A. $\frac{2}{9}$
B. ${ }^{~} 4 / 9$
C. $\frac{2}{3}$
D. $\frac{2}{7}$

Answer:

- Watch Video Solution

12. If x is real, then the maximum value of $y=2(a-x)\left(x+\sqrt{x^{2}+b^{2}}\right)$
A. $a^{2}+b^{2}$
B. $a^{2}-b^{2}$
C. $a^{2}+2 b^{2}$
D. None of these

Answer:

- Watch Video Solution

13. The minimum value of $p x+p y$ when $x y=r^{2}$ is equal to
A. $2 r \sqrt{p q}$
B. $2 p q \sqrt{r}$
C. $-2 r \sqrt{p q}$
D. $\sqrt{p q}$

D Watch Video Solution

14. Let z_{1}, z_{2} be two complex numbers represented by points on the circle|z| $=1$ and $|z|=2$ respectively,then which of the following is incorrect
A. $\max \left|2 z_{1}+z_{2}\right|=4$
B. $\min \left|z_{-} 1-z_{-} 2\right|=1$
C. $\left|z_{2}+\frac{1}{z_{1}}\right| \leq 3$
D. None of these
15. Let A be a set consisting of n elements. The probability of selecting two subsets P and Q of set A such that $Q=\bar{P}$, is
A. $1 / 2$
B. $1 /\left(2^{k}-1\right)$
C. $1 / 2^{k}$
D. $1 / 3^{k}$

Answer:
16. If p, q, r are positive and are in A.P., the roots of quadratic equation $p x^{2}+q x+r=0$ are all real for $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3} \quad$ b. $\quad\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3} \quad$ c. \quad allpandr \quad d. nopandr
A. $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
B. $\left|\frac{p}{r}-7\right|<4 \sqrt{3}$
C. all p and r
D. no p and r

Answer:
17. The general solution of the trigonometric equation $\sin x+\cos x=1$ is given by
A. $x=2 n \pi, n=0, \pm 1, \pm 2 \ldots$
B. $x=2 n \pi+\pi / 2, n=0, \pm 1, \pm 2 \ldots$.
C. $x=n \pi+(-1)^{n}\left(\frac{\pi}{4}-\frac{\pi}{4}\right) n=0, \pm 1, \pm 2$
D. None of these

Answer:

- Watch Video Solution

18. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose
$Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k l$, where $k \in \mathbb{R}, k \neq 0$ and l is the identity matrix of order 3 . If
$q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $a=0, k=8$
B. $4 a-k+8=0$
C. $\operatorname{det}(P a d j Q) 2^{9}(d)$
D. $\operatorname{det}(Q a d j P)=2^{9}$

Answer:

19. The total number of distinct $x \in(0,1]$ for which
$\int_{0}^{x} \frac{t^{2}}{1+t^{4}} d t=2 x-1$ is
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

20. $P(a, b)$ is a point in the first quadrant Circles are drawn through P touching the coordinate axes such that
the length of common chord of these circles is maximum, if possible values of $\frac{a}{b}$ is k_{1} and k_{2}, then $k_{1}+k_{2}$ is equal to
A. $3 \pm 3 \sqrt{2}$
B. $3+2 \sqrt{3}$
C. $3-2 \sqrt{3}$
D. $3 \pm 2 \sqrt{2}$

Answer:

- Watch Video Solution

21. Given that n is odd, number of ways in which three numbers in AP can be selected from $1,2,3, \ldots, n$, is
A. $\frac{(n-1)^{2}}{2}$
B. $\frac{(n+1)^{2}}{2}$
C. $\frac{n^{2}-1}{4}$
D. $\frac{(n-1)^{2}}{4}$

Answer:

- Watch Video Solution

22. A certain polynomial $P(x) x \in R$ when divided by k $x-a, x-b a n d x-c$ leaves remainders $a, b, a n d c$ resepectively. Then find remainder when $P(x)$ is divided by $(x-a)(x-b)(x-c) w h e r e a b, c$ are distinct.
A. 0
B. x
C. $a x+b-c$
D. $a x^{2}+b x+c$

Answer:

- Watch Video Solution

23. The point of intersection of two tangents to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, the product of whose slopes is c^{2}, lies on the curve
A. $y^{2}-b^{2}=c^{2}\left(x^{2}+a^{2}\right)$
B. $y^{2}+a^{2}=c^{2}\left(x^{2}-b^{2}\right)$
C. $y^{2}+b^{2}=c^{2}\left(x^{2}-a^{2}\right)$
D. $y^{2}-a^{2}=c^{2}\left(x^{2}+b^{2}\right)$

Answer:

- Watch Video Solution

24.

$f(x+y)=f(x)+f(y)-x y-1 \forall x, y \in \operatorname{Randf}(1)=1$,
then the number of solution of $f(n)=n, n \in N$, is 0
(b) 1 (c) 2 (d) more than 2
A. 0
B. 1
C. 2
D. more than 2

Answer:

- Watch Video Solution

25. The area of the region bounded by the curves
$y=|x-1|$ and $y=3-|x|$ is (A) 6 sq. units (B) 2 sq.
units (C) 3 sq. units (D) 4 sq. units
A. 6 sq.units
B. 2 sq.units
C. 3 sq.units
D. 4 sq.units

Answer:

- Watch Video Solution

