©゙" doubtnut

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 6

Exercise

1. $\lim _{x \rightarrow 2}\left(\frac{\sqrt{1-\cos \{2(x-2)\}}}{x-2}\right)$
A. equals $\sqrt{2}$
B. equals $-\sqrt{2}$
C. equals $\frac{1}{\sqrt{2}}$
D. does not exist

Answer:

- Watch Video Solution

2. If $P O R$ is the triangle formed by the common tangents to the circles $x^{2}+y^{2}+6 x=0$ and $x^{2}+y^{2}-2 x=0$, then the centroid of the triangle is at the point (a) (1,0) (b) (0,0) (c) (-1,0) (d) none of these
A. centroid of $\triangle P Q R$ is $(1,0)$
B. incentre of the $\triangle P Q R$ is $(1,0)$
C. circumcenter of the $\triangle P Q R$ is $(1,0)$
D. orthocenter of the $\triangle P Q R$ is $(2,0)$

Answer:

D Watch Video Solution

3. Let $f(x)$ be a continuous function, $\forall x \in R, f(0)=1$ and $f(x) \neq x$ for any $x \in R$, then show $f(f(x))>x, \forall x \in R^{+}$
A. $f(f(x))=x$ for some $x \in R$
B. $f(f(x))>x \forall x \in R$
C. $f(f(x))<x \forall x \in R$
D. None of these

Answer:

- Watch Video Solution

4. An eppipse of eccentricity $\frac{2 \sqrt{2}}{3}$ is inscribed in a circle and a point within the circle is chosen at random. The probability that this point lies outside the ellipse is
A. $\frac{1}{9}$
B. $\frac{4}{9}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer:

- Watch Video Solution

5. $\sin ^{-1}(\sin 5)>x^{2}-4 x$ holds if
A. $x<2-\sqrt{9-2 \pi}$
B. $-1<x<5$
C. $x \in(-\infty,-1) \cup(5, \infty)$
D. $x \in(2-\sqrt{9-2 \pi}, 2+\sqrt{9-2 \pi})$

Answer:

D Watch Video Solution

6. A is one of the 6 horses entered for a race and is to
be ridden by one of two jockeys B and C. It is 2 to 1 that B rides A , in which case all the horses are equally
likely to win. If C rides A , his chance is trebled what are the odds against his winning
A. 2:1
B. 3:2
C. 1:2
D. $2: 3$

Answer:

- Watch Video Solution

7. Let coordinates of the points A and B are (5, 0) and
$(0,7)$ respectively. P and Q are the variable points lying on the x - and y-axis respectively so that PQ is always perpendicular to the line $A B$. Then locus of the point of intersection of $B P$ and $A Q$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-5 x+7 y=0 \\
& \text { B. } x^{2}+y^{2}+5 x-7 y=0
\end{aligned}
$$

C. $x 2+y 2+5 x+7 y=0$
D. $x 2+y 2-5 x-7 y=0$

Answer:

- Watch Video Solution

8. If $\cos 3 \mathrm{x}+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2$, then $\mathrm{x}=$
A. $\frac{\pi}{3}(6 m-1)$
B. $\frac{\pi}{3}(6 m+1)$
C. $\frac{\pi}{3}(2 m+1)$
D. None of these

Answer:

D Watch Video Solution

9.

Solve
$\log _{3}(x+2)(x+4)+\log _{1 / 3}(x+2)<\frac{1}{2} \log _{\sqrt{3}} 7$.
A. $(-2,-1)$
B. $(-2,3)$
C. $(-1,3)$
D. $(3, \infty)$

Answer:

10.
 If
 $k \in I$
 such
 that
 $\lim _{n \rightarrow \infty}\left(\cos . \frac{k \pi}{4}\right)^{2 n}-\left(\cos \cdot \frac{k \pi}{6}\right)^{2 n}=0$, then

A. k must not be divisible by 24
B. k is divisible by 24 or k is divisible neither by 4
nor by 6
C. k must be divisible by 12 but not necessarily by 24
D. None of these

Answer:
11. On the set N of all natural numbers define the rational R by $a R b$ iff the G.C.D. of a and b is 2 . Then R is
A. reflexive, but not symmetric
B. symmetric only
C. reflexive and transitive
D. not reflexive, not symmetric, not transitive

Answer:

12. Prove that for $n=1,2,3 \ldots$

$$
\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\left[\frac{n+4}{8}\right]+\left[\frac{n+8}{16}\right]+\ldots=n
$$

where $[x]$ represents Greatest Integer Function
A. $n-1$
B. n
C. $n+2$
D. $2 n$

Answer:

13. The system of homogenous equations
$t x+(t+1) y+(t-1) z=0$,
$(t+1) x+t y+(t+2) z=0$,
$(t-1) x+(t+2) y+t z=0$ has a non trivial
solution for
A. three values of t
B. two values of t
C. one value of t
D. no value of t

Answer:
14. Let $f(x) \operatorname{and} g(x)$ be bijective functions where $f:\{1, b, c, d\} \overrightarrow{1,2,3,4}$ and $:\{3,4,5,6\} \overrightarrow{2, x, y, z}$, respectively. Then, find the number of elements in the range of $g(f(x)\}$.
A. 1
B. 2
C. 3
D. 4

Answer:

15. Let ω be a complex cube root unity with $\omega \neq 1$. A
fair die is thrown three times. If $r_{1}, r_{2} a n d r_{3}$ are the numbers obtained on the die, then the probability that $\omega^{r 1}+\omega^{r 2}+\omega^{r 3}=0$ is $1 / 18$ b. $1 / 9$ c. $2 / 9 \mathrm{~d}$. $1 / 36$
A. $1 / 18$
B. $1 / 9$
C. $2 / 9$
D. $1 / 36$

Answer:
16. Let $I=\int^{\pi / 3} \frac{\sin x}{x} d x$, then I belongs to

$$
\pi / 4
$$

A. $\left(\frac{\sqrt{3}}{8}, \frac{\sqrt{2}}{6}\right)$
B. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$
D. None of these

Answer:

17. The area between the curves $y=2 x^{4}-x^{2}$, the x axis and the ordinates of two minima of the be curve
is (A) $\frac{7}{240}$ (B) $\frac{7}{120}$ (C) $\frac{7}{60}$ (D) None of these
A. $\frac{7}{120}$
B. $\frac{9}{120}$
C. $\frac{11}{120}$
D. $\frac{13}{120}$

Answer:

18. $f(x)=\left\{\begin{array}{lll}2- & \left|x^{2},+, 5 x,+, 6\right|, & x \neq-2 \\ a^{2} & +1, & x=-2\end{array}\right.$
,then the range of a, so
that $f(x)$ has maxima at $x=-2$ is
A. $|a| \geq 1$
B. $|a|<1$
C. agt1
D. alt 1

Answer:
19. If f is the centre of a circle inscribed in a triangle $A B C$, then $|\overrightarrow{B C}| \overrightarrow{I A}+|\overrightarrow{C A}| \overrightarrow{I B}+|\overrightarrow{A B}| \overrightarrow{I C}$ is
A. zero
B. $\frac{\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C}}{3}$
C. $3(\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C})$
D. None of these

Answer:

20. The number of numbers, that can be formed by using all digits $1,2,3,4,3,2,1$ so that odd digits always occupy odd places, is
A. 18
B. 34
C. 30
D. 12

Answer:

21. If sum of two numbers is 3 , then maximum value of
the product of first and the square of second is
A. 4
B. 3
C. 2
D. 1

Answer:

22. Suppose that f is a differentiable function with the property that
$f(x+y)=f(x)+f(y)+x y$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(h)=3$
, where [.] represents greatest integer function, then
A. f is a linear function
B. $f(x)=3 x+x^{2}$
C. $f(x)=3 x+\frac{x^{2}}{2}$
D. None of these

Answer:

23. consider the expression $3^{\sin ^{6} x}+3^{\cos ^{6} x}$ find the minimum value.
A. $2.3^{1 / 8}$
B. $2.3^{7 / 8}$
C. $3.2^{1 / 8}$
D. 6

Answer:

