©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 7

Exercise

1. $x^{3}+5 x^{2}+p x+q=0$ and $x^{3}+7 x^{2}+p x+r=0$
have two roots in common. If their third roots are γ_{1} and
γ_{2}, respectively, then $\left|\gamma_{1}+\gamma_{2}\right|=$
A. 12
B. -12
C. 2
D. -2

Answer:

(Watch Video Solution

2. If $f(x)=x^{3}+3 x^{2}+4 x+a \sin x+b \cos x, \forall x \in R$ is a one-one fuction, then the greatestn value of $\left(a^{2}+b^{2}\right)$ is
A. 1
B. 2
C. $\sqrt{2}$
D. None

- Watch Video Solution

3. If $x \equiv 2+{ }^{2 / 3}$ then the value $\left(x^{3}-6 x^{2}+6 x\right) i s$
A. 3
B. 2
C. 1
D. None of these

Answer:

4. Let C_{1} and C_{2} be two circles with C_{2} lying inside C_{1} circle C lying inside C_{1} touches C_{1} internally andexternally. Identify the locus of the centre of C
A. Parabola
B. Cirlce
C. Ellipse
D. None of these

Answer:

- Watch Video Solution

5. The locus of the orthocentre of the triangle formed by the
$(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$, where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola
(C) an ellipse (D) a straight line
A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line

Answer:

- Watch Video Solution

6. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line y
= x (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.
A. $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
B. $(-\sqrt{2}, 7 \sqrt{2})$
C. $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
D. $(\sqrt{2}, 7 \sqrt{2})$

Answer:

- Watch Video Solution

7. Let the altitudes from the vertices A, B and Cof the triangle e ABCmeet its circumcircle at D, E and F respectively and z_{1}, z_{2} and z_{3} represent the points D, E and F respectively. If $\frac{z_{3}-z_{1}}{z_{2}-z_{1}}$ is purely real then the $z_{2}-z_{1}$ triangle $A B C$ is
A. obtuse angled
B. right angled
C. right angled isosceles
D. equilateral

Answer:
8. Minimum distance between $y^{2}-4 x-8 y+40=0$ and
$x^{2}-8 x-4 y+40=0$ is
A. 0
B. $\sqrt{3}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer:

- Watch Video Solution

9. Entries of a 2×2 determinant are chosen from the set
$\{-1,1\}$. The probability that determinant has zero value is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. None of these

Answer:

- Watch Video Solution

10. Find the area bounded by the curve
$f(x)=x+\sin x$ and its inverse function between the ordinates $x=0$ to $x=2 \pi$.
A. 4π square units
B. 8π square units
C. 4 square units
D. 8 square units

Answer:

- Watch Video Solution

11. The set of values of ' c ' so that the equations $y=|x|+c$ and $x^{2}+y^{2}-8|x|-9=0$ have no solution is
A. $(-\infty,-3) \cup(3, \infty)$
B. $(-3,3)$
C. $(-\infty,-\sqrt{2}) \cup(5 \sqrt{2}, \infty)$
D. $(5 \sqrt{2}-4, \infty)$

Answer:

- Watch Video Solution

12. Fifteen coupons are numbered $1,2,3$,..., 15 respectively.

Seven coupons are selected random one at a time with replacement. The probability that the largest number appearing on the selected coupons is atmost 9 , is :
A. $9^{7}-8^{7}$
B. $10^{7}-8^{7}$
C. $8^{7}-7^{7}$
D. None of these

- Watch Video Solution

13. The point $\binom{P+1}{P}$ (where [.] denotes the greatest integer function), lying inside the region bounded by the circle
$x^{2}+y^{2}-2 x-15=0$ and $x^{2}+y^{2}-2 x-7=0$, then
A. $P \in[-1,0) \cup(0,1) \cup(1,2)$
B. $P \in(0,1)$
C. $P \in(-1,2)$
D. None of these
14. If $A=\left\{x: x^{2}=1\right\}$ and $B=\left\{x: x^{4}=1\right\}$, then $A \Delta B$ is equal to
A. $\{i,-i\}$
B. $\{-1,1\}$
C. $\{-1,1, i,-i\}$
D. None of these

Answer:

15. Domain of definition of the function
$f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is:
A. $(-1,0) \cup(1,2) \cup(2, \infty)$
B. $(a, 2)$
C. $(-1,0) \cup(a, 2)$
D. $(1,2) \cup(2, \infty)$.

Answer:

- Watch Video Solution

16. If $\{x\}$ represents the fractional part of x, then

$$
\int_{0}^{100}\{\sqrt{x}\} d x=
$$

A. 615
B. $\frac{155}{3}$
C. $\frac{2000}{3}$
D. 100

Answer:
(Watch Video Solution

