

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 7

1. $x^3 + 5x^2 + px + q = 0$ and $x^3 + 7x^2 + px + r = 0$

have two roots in common. If their third roots are γ_1 and γ_2 , respectively, then $|\gamma_1+\gamma_2|$ =

A. 12

B. -12

C. 2

D. -2

Answer:

Watch Video Solution

2. If $f(x)=x^3+3x^2+4x+a\sin x+b\cos x,\ orall x\in R$ is

a one-one fuction, then the greatestn value of $\left(a^2+b^2
ight)$ is

A. 1

B. 2

 $\mathsf{C}.\,\sqrt{2}$

D. None

Answer:

3. If $x\equiv 2+^{2/3}$ then the value $(x^3-6x^2+6x)is$

A. 3

B. 2

C. 1

D. None of these

Answer:

Watch Video Solution

4. Let C_1 and C_2 be two circles with C_2 lying inside C_1 circle

C lying inside C_1 touches C_1 internally and externally.

Identify the locus of the centre of C

A. Parabola

B. Cirlce

C. Ellipse

D. None of these

Answer:

Watch Video Solution

5. The locus of the orthocentre of the triangle formed by

lines

 $(1+p)x-py+p(1+p)=0,\,(1+q)x-qy+q(1+q)=0$ and y = 0, where $p
eq \cdot q$, is (A) a hyperbola (B) a parabola

(C) an ellipse (D) a straight line

A. a hyperbola

B. a parabola

C. an ellipse

D. a straight line

Answer:

Watch Video Solution

6. The point (4, 1) undergoes the following three transformations successively: (a) Reflection about the line y

= x (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.

A.
$$\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$

B. $\left(-\sqrt{2}, 7\sqrt{2}\right)$
C. $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
D. $\left(\sqrt{2}, 7\sqrt{2}\right)$

7. Let the altitudes from the vertices A, B and Cof the triangle e ABCmeet its circumcircle at D, E and F respectively and z_1 , z_2 and z_3 represent the points D, E and F respectively. If $\frac{z_3 - z_1}{z_2 - z_1}$ is purely real then the triangle ABC is

A. obtuse angled

B. right angled

C. right angled isosceles

D. equilateral

Answer:

Watch Video Solution

8. Minimum distance between $y^2 - 4x - 8y + 40 = 0$ and

$$x^2 - 8x - 4y + 40 = 0$$
 is

A. 0

B. $\sqrt{3}$

C. $2\sqrt{2}$

D. $\sqrt{2}$

Answer:

9. Entries of a 2 imes 2 determinant are chosen from the set $\{-1,1\}$. The probability that determinant has zero value

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$
C. $\frac{1}{2}$

D. None of these

Answer:

10. Find the area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates x=0 to $x=2\pi$.

A. 4π square units

B. 8π square units

C. 4 square units

D. 8 square units

Answer:

Watch Video Solution

11. The set of values of 'c' so that the equations y = |x| + c and $x^2 + y^2 - 8|x| - 9 = 0$ have no solution is

A.
$$(-\infty, -3) \cup (3,\infty)$$

B. (-3,3)

$$\mathsf{C}.\ \big(-\infty,\ -\sqrt{2}\big)\cup\big(5\sqrt{2},\infty\big)$$

D. $\left(5\sqrt{2}-4,\infty
ight)$

Answer:

12. Fifteen coupons are numbered 1, 2, 3,..., 15 respectively. Seven coupons are selected random one at a time with replacement. The probability that the largest number appearing on the selected coupons is atmost 9, is :

A.
$$9^7 - 8^7$$

- $B.\,10^7 8^7$
- $C.8^7 7^7$
- D. None of these

13. The point $\begin{pmatrix} P+1\\ P \end{pmatrix}$ (where [.] denotes the greatest integer function), lying inside the region bounded by the circle

$$x^2+y^2-2x-15=0\,\, ext{and}\,\,x^2+y^2-2x-7=0,\,\, ext{then}$$
 :
A. $P\in [-1,0)\cup (0,1)\cup (1,2)$
B. $P\in (0,1)$
C. $P\in (-1,2)$

D. None of these

14. If
$$A=\left\{x\!:\!x^2=1
ight\}$$
 and $B=\left\{x\!:\!x^4=1
ight\}$, then $A\Delta B$

is equal to

A. {i,-i}

B. {-1,1}

C. {-1,1,i,-i}

D. None of these

15. Domain of definition of the functioni
$$f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x), \text{ is:}$$
A. $(-1, 0) \cup (1, 2) \cup (2, \infty)$
B. $(a, 2)$
C. $(-1, 0) \cup (a, 2)$
D. $(1, 2) \cup (2, \infty)$.

Answer:

Watch Video Solution

16. If {x} represents the fractional part of x, then $\int_{0}^{100} {\sqrt{x}} dx =$

A. 615

B.
$$\frac{155}{3}$$

C. $\frac{2000}{3}$

D. 100

Answer:

Watch Video Solution