

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 8

Exercise

1. if $A(z_1), B(z_2), C(z_3), D(z_4)$ lies on $|\mathsf{z}|$ =4 (taken in order) ,

where $z_1 + z_2 + z_3 + z_4 = 0$ then :

A. a rectangle

B. a square

C. a rhombus

D. None of these

Answer:

Watch Video Solution

2. If arphi(x) is a polynomial function and $arphi'(x) > arphi(x) \ orall x \ge 1 and arphi(1) = 0,$ then $arphi(x) \ge 0 \ orall x \ge 1$

A.
$$\phi(x) \geq 0 \, orall x \geq 1$$

B.
$$\phi(x) < 0 \, orall x \geq 1$$

$$\mathsf{C}.\,\phi(x)=0\,orall x\geq 1$$

D. None of these

3. Let $(a_1, a_2, a_3, a_4, a_5)$ denote a re-arrangement of (1, -4, 6, 7, -10). Then the equation $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ has at least two real roots. Statement (2): If $ax^2 + bx + c = 0\&a + b + c = 0$, (i.e. in a polynomial the sum of coefficients is zero) then x = 1 is root of $ax^2 + bx + c = 0$.

A. at least two real roots

B. all four real roots

C. only imaginary roots

D. none of these

4. The period of the function

$$f(x) = \cos 2\pi \{2x\} + \sin 2\pi \{2x\},$$

is (where {x} denotes the functional part of x)

A. 1

B.
$$\frac{\pi}{2}$$

C. $\frac{1}{2}$

D. π

Answer:

Watch Video Solution

5. Prove that $\sin heta = x + rac{p}{x}$ is possible for real x if $p \leq rac{1}{4}$

A.
$$p \leq rac{1}{4}$$

B. plt0

C. pgt0

D. $p\geq 1$

Answer:

6. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then which one of the following is

correct ?

A.
$$\overrightarrow{a}=\lambda \, \overrightarrow{b}$$
 for some scalar λ

B. \overrightarrow{a} is parallel to \overrightarrow{b}

C. \overrightarrow{a} is perpendicular to \overrightarrow{b}

$$\mathsf{D}.\,\overrightarrow{a}=\overrightarrow{b}=\overrightarrow{0}$$

Watch Video Solution

7. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in the party, is : 469 (2) 484 (3) 485 (4) 468

A. 484

B. 485

C. 468

D. 469

Watch Video Solution

8. Given that the sum of two non-negative quantities is 200, the probability that their product is not less than 3/4 times their greatest product value is

A.
$$\frac{7}{16}$$

B. $\frac{101}{201}$
C. $\frac{9}{16}$
D. $\frac{10}{16}$

9. If $x^2 + ax + b^2 = 0$ has real roots then which of these is a possible ordered pair (a,b) ?

A. (3,1)

B. (6,3)

C. (2,3)

D. None of these

10. If
$$f(x)=\sin^2x+\sin^2\Bigl(x+rac{\pi}{3}\Bigr)+\cos x \cos\Bigl(x+rac{\pi}{3}\Bigr) andg\Bigl(rac{5}{4}=1$$
then $(gof)(x)$ is

A. a circle

B. a straight line

C. a parabola

D. none of these

Answer:

Watch Video Solution

11. The area of the region enclosed by the curve $|y| = -(1 - |x|)^2 + 5$, is A $\frac{8}{7}(7 + 5, \sqrt{5})$ sq units

B.
$$\frac{2}{3}(7+5\sqrt{5})$$
 sq. units
C. $\frac{2}{3}(5\sqrt{5}-7)$ sq. units

D. None of these

12. If
$$\left(m_i, rac{1}{m_i}
ight), i=1,2,3,4$$
 are four distinct points on a

circle, show that $m_1m_2m_3m_4=1$

A. 0

B. 2

C. -1

D. 1

Answer:

Watch Video Solution

13. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10

A. $\frac{31}{10}$ B. $\frac{29}{10}$ C. $\frac{21}{10}$ D. $\frac{27}{10}$

Answer:

Watch Video Solution

14. Number of integral points (integral points means both the co-ordinates should be integer) exactly in the interior of the triangle with vertices (0, 0), (0, 15) and Or(15, 0) is

A. 133

B. 190

C. 233

D. 105

Answer:

Watch Video Solution

15. The domain of the funciton f(x) given by $3^x+3^f=\minig(2t^3-15t^2+36+-25,2+|\sin t|,2\leq t\leq 4ig)$

A.
$$(-\infty, 1)$$

B. $(-\infty, \log_3 e)$
C. $(0, \log_3 2)$
D. $(-\infty, \log_3 2)$

Watch Video Solution

16. The sum of the square of the length of the chord intercepted

by the line n+y=n, $n\in N$ on the circle $x^2+y^2=4$ is

A. 11

B. 22

C. 33

D. None of these

17. The value of
$$\int_0^1 \lim_{n o \infty} \sum_{k=0}^n rac{x^{k+2}2^k}{k!} dx$$
 is:

A.
$$e^2-1$$

B. 2

C.
$$\frac{e^2 - 1}{2}$$

D. $\frac{e^2 - 1}{4}$

18. If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n - 1) : n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to (1) N (2) Y - X (3) X (4) Y

A. X

B. Y

C. N

D. Y - X

Answer:

Watch Video Solution

19. The domain of $f(x)=rac{\log_2(x+3)}{x^2+3x+2}$ is

A.
$$R - \{ -1, -2 \}$$

B.
$$(\,-2,\infty)$$

C. $R-\{\,-1,\ -2-3\}$
D. $(\,-3,\infty)-\{\,-1,\ -2\}$

Watch Video Solution

20. The least possible value of a for which $\frac{x^3-6x^2+11x-6}{x^3+x^2-10x+8}+\frac{a}{30}=0$ does not have a real solution is A. -10

B. 12

C. 5

D. -30

Watch Video Solution