©゙" doubtnut

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 8

Exercise

1. if $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right), D\left(z_{4}\right)$ lies on $|\mathrm{z}|=4$ (taken in order), where $z_{1}+z_{2}+z_{3}+z_{4}=0$ then :
A. a rectangle
B. a square
C. a rhombus
D. None of these

Answer:

- Watch Video Solution

2. If $\varphi(x)$ is a polynomial function and $\varphi^{\prime}(x)>\varphi(x) \forall x \geq 1 \operatorname{and} \varphi(1)=0, \quad$ then $\quad \varphi(x) \geq 0 \forall x \geq 1$ `varphi(x)
A. $\phi(x) \geq 0 \forall x \geq 1$
B. $\phi(x)<0 \forall x \geq 1$
C. $\phi(x)=0 \forall x \geq 1$
D. None of these

Answer:

3. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ denote a re-arrangement of $(1,-4,6,7,-10)$ Then the equation $a_{1} x^{4}+a_{2} x^{3}+a_{3} x^{2}+a_{4} x+a_{5}=0$ has at least two real roots. Statement (2): If $a x^{2}+b x+c=0 \& a+b+c=0$, (i.e. in a polynomial the sum of coefficients is zero) then $x=1$ is root of $a x^{2}+b x+c=0$.
A. at least two real roots
B. all four real roots
C. only imaginary roots
D. none of these

Answer:

4. The period of the function

$$
f(x)=\cos 2 \pi\{2 x\}+\sin 2 \pi\{2 x\}
$$

is (where $\{x\}$ denotes the functional part of x)
A. 1
B. $\frac{\pi}{2}$
C. $\frac{1}{2}$
D. π

Answer:

D Watch Video Solution

5. Prove that $\sin \theta=x+\frac{p}{x}$ is possible for real x if $p \leq \frac{1}{4}$
A. $p \leq \frac{1}{4}$
B. plt0
C. pgt0
D. $p \geq 1$

Answer:

- Watch Video Solution

6. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then which one of the following is correct ?
A. $\vec{a}=\lambda \vec{b}$ for some scalar λ
B. \vec{a} is parallel to \vec{b}
C. \vec{a} is perpendicular to \vec{b}
D. $\vec{a}=\vec{b}=\overrightarrow{0}$

- Watch Video Solution

7. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men.

Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in the party, is : 469 (2) 484 (3) 485 (4) 468
A. 484
B. 485
C. 468
D. 469

- Watch Video Solution

8. Given that the sum of two non-negative quantities is 200 , the probability that their product is not less than $3 / 4$ times their greatest product value is
A. $\frac{7}{16}$
B. $\frac{101}{201}$
C. $\frac{9}{16}$
D. $\frac{10}{16}$

Answer:

9. If $x^{2}+a x+b^{2}=0$ has real roots then which of these is a possible ordered pair (a, b) ?
A. $(3,1)$
B. $(6,3)$
C. $(2,3)$
D. None of these

Answer:

- Watch Video Solution

10.

If
$f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)$ andg $\left(\frac{5}{4}=1\right.$,
then $(g o f)(x)$ is
A. a circle
B. a straight line
C. a parabola
D. none of these

Answer:

- Watch Video Solution

11. The area of the region enclosed by the curve $|y|=-(1-|x|)^{2}+5$, is
A. $\frac{8}{3}(7+5 \sqrt{5})$ sq. units
B. $\frac{2}{3}(7+5 \sqrt{5})$ sq. units
C. $\frac{2}{3}(5 \sqrt{5}-7)$ sq. units
D. None of these

- Watch Video Solution

12. If $\left(m_{i}, \frac{1}{m_{i}}\right), i=1,2,3,4$ are four distinct points on a circle, show that $m_{1} m_{2} m_{3} m_{4}=1$
A. 0
B. 2
C. -1
D. 1

Answer:

13. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is $31 / 10$

29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer:

14. Number of integral points (integral points means both the co-ordinates should be integer) exactly in the interior of the triangle with vertices $(0,0),(0,15)$ and $\operatorname{Or}(15,0)$ is
A. 133
B. 190
C. 233
D. 105

Answer:

- Watch Video Solution

15. The domain of the funciton $f(x)$ given by $3^{x}+3^{f}=\min \left(2 t^{3}-15 t^{2}+36+-25,2+|\sin t|, 2 \leq t \leq 4\right)$ is
A. $(-\infty, 1)$
B. $\left(-\infty, \log _{3} e\right)$
C. $\left(0, \log _{3} 2\right)$
D. $\left(-\infty, \log _{3} 2\right)$

Answer:

- Watch Video Solution

16. The sum of the square of the length of the chord intercepted by the line $\mathrm{n}+\mathrm{y}=\mathrm{n}, n \in N$ on the circle $x^{2}+y^{2}=4$ is
A. 11
B. 22
C. 33
D. None of these
17. The value of $\int_{0}^{1} \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k+2} 2^{k}}{k!} d x$ is:
A. $e^{2}-1$
B. 2
C. $\frac{e^{2}-1}{2}$
D. $\frac{e^{2}-1}{4}$

Answer:

18. If $X=\left\{4^{n}-3 n-1: n \in N\right\} \operatorname{and} Y=\{9(n-1): n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to
(1) $N(2) Y-X(3) X(4) Y$
A. X
B. Y
C. N
D. $Y-X$

Answer:

- Watch Video Solution

19. The domain of $f(x)=\frac{\log _{2}(x+3)}{x^{2}+3 x+2}$ is
A. $R-\{-1,-2\}$
B. $(-2, \infty)$
C. $R-\{-1,-2-3\}$
D. $(-3, \infty)-\{-1,-2\}$

Answer:

- Watch Video Solution

20. The least possible value of a for which $\frac{x^{3}-6 x^{2}+11 x-6}{x^{3}+x^{2}-10 x+8}+\frac{a}{30}=0$ does not have a real solution is
A. -10
B. 12
C. 5
D. -30
