©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 9

Exercise

1. If $\sin x+\cos x=\sqrt{y+\frac{1}{y}}, y>0, x \in[0, \pi]$, then find the least value of x satisfying the given conditions.
A. $x=\frac{\pi}{4}$
B. $y=0$
C. $y=2$
D. $x=\frac{3 \pi}{4}$

D Watch Video Solution

2. If $f(x)=x+\tan x$ and f is the inverse of g, then $g^{\prime}(x)$ is equal to
A. $\frac{1}{1+[g(x)-x]^{2}}$
B. $\frac{1}{2-[g(x)-x]^{2}}$
C. $\frac{1}{2+[g(x)-x]^{2}}$
D. None of these

Answer:

- Watch Video Solution

3. If $(\log)_{0.3}(x-1)<(\log)_{0.09}(x-1)$, then x lies in the interval
$(2, \infty)(b)(1,2)(-2,-1)$ (d) None of these
A. $(2, \infty)$
B. -1.2
C. $(-2,-1)$
D. None of these

Answer:

- Watch Video Solution

4. The minimum value of the sum of real number $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}, a n d a^{10} w i t h a>0$ is
A. 5
B. 13
C. 8
D. 11

Answer:

5. Let n be an odd integer. If $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$ for all real θ is
A. $b_{0}=1, b_{1}=3$
B. $b_{0}=0, b_{1}=n$
C. $b_{0}=-1, b_{1}=n$
D. $b_{0}=0, b_{1}=n^{2}-3 n+3$

Answer:

- Watch Video Solution

6. The circle passing through the point $(-1,0)$ and touching the y-axis at $(0,2)$ also passes through the point (A) $(-3 / 2,0)(B)(-5 / 2,2)$ (C) $(-3 / 2,5 / 2)$ (D) $\left.(-4,0) \hat{a} \epsilon^{\sim} . .22\right)$

$$
\text { A. }\left(-\frac{3}{2}, 0\right)
$$

B. $\left(-\frac{5}{2}, 2\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $(-4,0)$

Answer:

- Watch Video Solution

7. Let $\mathrm{P}(6,3)$ be a point on the hyperbola parabola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ f the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is
A. $\sqrt{\frac{5}{2}}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer:

8. Let $P(x)$ be a polynomial of least degree whose graph has three points of inflection $(-1,-1),(1.1)$ and a point with abscissa 0 at which the curve is inclined to the axis of abscissa at an angle of 60°. Then find the value of $\int_{0}^{1} p(x) d x$.
A. $\frac{3 \sqrt{3}+4}{14}$
B. $\operatorname{frac}(3 \mathrm{sqrt} 3)(7)$
C. $\frac{\sqrt{3}+\sqrt{7}}{14}$
D. $\frac{\sqrt{3}+2}{7}$

Answer:

- Watch Video Solution

9. $I f|z|=\max \{|z-1|,|z+1|\}$, then
A. $|z+\bar{z}|=\frac{1}{2}$
B. $z+\bar{z}=1$
C. $|z+\bar{z}|=1$
D. None of these

Answer:

- Watch Video Solution

10. The number of ordered triplets (a, b, c) such that
L.C.M. $(a, b)=1000, L . C . M .(b, c)=2000$ and L.C.M. $(c, a)=2000$
A. 70
B. 80
C. 90
D. None of these
11. If m things are distributed among a men and b women. Then the probability that number of things received by men is odd is
A. 3b
B. 4 b
C. 2b
D. b

Answer:

- Watch Video Solution

12. Solve for $x: 4^{x} 3^{x-1 / 2}=3^{x+1 / 2}-2^{2 x-1}$.
A. 0
B. 1
C. 2
D. None of these

Answer:

- Watch Video Solution

13. The equation, $2 x^{2}+3 y^{2}-8 x-18 y+35=K$ represents
A. no locus if kgt 0
B. an ellipse if klt 0
C. a point if $\mathrm{k}=0$
D. a hyperbola if kgt 0

Answer:

14. If f be decreasing continuous function satisfying
$f(x+y)=f(x)+f(y)-f(x) f(y) Y x, y \varepsilon R, f^{\prime}(0)=1 \quad$ then $\int_{0}^{1} f(x) d x$ is
A. 1
B. $1-e$
C. $2-e$
D. 2

Answer:

- Watch Video Solution

15. The co-ordinates of the points on the barabola $y^{2}=8 x$, which is at minium distance from the circle $x^{2}+(y+6)^{2}=1$ are
A. $(2,-4)$
B. $(18,-12)$
C. -2.4
D. None of these

Answer:

- Watch Video Solution

16. Let \vec{a}, \vec{b}, and \vec{c} be three non zero vector such that no two of these are collinear. If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ iscol \in earwithveca
be \in gsomenonzeroscalar $)$ thenvecal+2vecb+6veccequals (A) lamdaveca (B)lamdavecb (C)lamdavecc (D) 0
A. 0
B. $\lambda \vec{b}$
C. $\lambda \vec{c}$
D. $\lambda \vec{a}$

- Watch Video Solution

17. If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is (are) possible value(s) of p, h and k ?
A. $p=-2, h=2, k=-4$
B. $p=-1, h=1, k=-3$
C. $p=2, h=3, k=-4$
D. $p=5, h=4, k=-3$

Answer:

18. If $b^{2}>4 a c$, then $a\left(x^{2}+4 x+4\right)^{2}+b\left(x^{2}+4 x+4\right)+c=0$ has distinct real roots if :
A. blt alt Olt c
B. alt blt Olt c
C. blt olt alt c
D. None of these

Answer:

- Watch Video Solution

19. $\lim _{n \rightarrow \infty} \prod_{r=3}^{n} \frac{r^{3}-8}{r^{3}+8}$
A. $\frac{2}{7}$
B. $\frac{3}{7}$
C. $\frac{4}{7}$
D. $\frac{6}{7}$

Answer:

- Watch Video Solution

20. If $x+\frac{1}{x}=1$ and $p=x^{100}+\frac{1}{x^{1000}}$ and q be the digit at unit place in the number $2^{2^{n}}+1, n \in N$ and $n>1$, then $\mathrm{p}+\mathrm{q}$ is equal to
A. 8
B. 6
C. 7
D. 0

Answer:
21. A conical vessel is to be prepared out of a circular sheet of metal of unit radius in order that the vessel has maximum value, the sectorial area that must be removed from the sheet is A_{1} and the area of the given sheet is A_{2}, then $\frac{A_{2}}{A_{1}}$ is equal to
A. $2+\sqrt{3}$
B. $2+\sqrt{6}$
C. $3+\sqrt{6}$
D. $3+\sqrt{2}$

Answer:

- Watch Video Solution

22. Maximum number area of rectangle whose two sides are
$x=x_{0}, x=\pi-x_{0}$ and which is inscribed in a region bounded by $\mathrm{y}=\mathrm{sin}$ x and X -axis is obtained when $x_{0} \in$
A. $\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$
B. $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$
C. $\left(0, \frac{\pi}{6}\right)$
D. None of these

Answer:

- Watch Video Solution

23. In a binomial distribution $B\left(n, p=\frac{1}{4}\right)$, if the probability of at least one success is greater than or equal to $\frac{9}{10}$, then n is greater than (1)
$\frac{1}{(\log)_{10}^{4}-(\log)_{10}^{3}} \frac{4}{(\log)_{10}^{4}-(\log)_{10}^{3}}$
(2) $\frac{1}{(\log)_{10}^{4}+(\log)_{10}^{3}}$
(3) $\frac{9}{(\log)_{10}^{4}-(\log)_{10}^{3}}$
A. $\frac{1}{\log _{10} 4+\log _{10} 3}$
B. $\frac{9}{\log _{10} 4-\log _{10} 3}$
C. $\frac{4}{\log _{10} 4-\log _{10} 3}$
D. $\frac{1}{\log _{10} 4-\log _{10} 3}$

Answer:

- Watch Video Solution

24. The equation of tangent to the curve $y=\int_{x^{2}}^{x^{3}} \frac{d t}{1+t^{2}}$ at $x=1$ is $\sqrt{3} x+1=y$ (b) $\sqrt{2} y+1=x \sqrt{3} x+y=1$ (d) $\sqrt{2} y=x$
A. $\sqrt{2} y+1=x$
B. $\sqrt{3} x+1=y$
C. $\sqrt{3} x+1+\sqrt{3}=y$
D. None of these

Answer:

25. Find the value of $\int_{-1}^{1}\left[x^{2}+\{x\}\right] d x$, where[.] $\operatorname{and}\{$.$\} denote the$ greatest function and fractional parts of x, respectively.
A. $\frac{\sqrt{5}(\sqrt{5}+1)}{2}$
B. $\frac{\sqrt{5}(\sqrt{5}-1)}{2}$
C. $-\frac{\sqrt{5}(\sqrt{5}+1)}{2}$
D. $\frac{3-\sqrt{5}}{2}$

Answer:

- Watch Video Solution

