MATHS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 9

Exercise

1. If $\sin x + \cos x = \sqrt{y + \frac{1}{y}}, y > 0, x \in [0, \pi]$, then find the least value of x satisfying the given conditions.

A.
$$x = \frac{\pi}{4}$$

D.
$$x = \frac{3\pi}{4}$$

Watch Video Solution

2. If f(x) = x + an x and f is the inverse of g, then $g^{\,\prime}(x)$ is equal to

A.
$$\dfrac{1}{1+\left[g(x)-x
ight]^2}$$

$$\mathsf{B.}\,\frac{1}{2-\left[g(x)-x\right]^2}$$

C.
$$\dfrac{1}{2+\left[g(x)-x
ight]^2}$$

D. None of these

Answer:

Watch Video Solution

3. If $(\log)_{0.3}(x-1)<(\log)_{0.09}(x-1)$, then x lies in the interval $(2,\infty)$ (b) (1,2) (-2,-1) (d) None of these

A. $(2, \infty)$ B. -1.2 C. (-2,-1) D. None of these **Answer:** Watch Video Solution minimum value of the sum The of real number $a^{-5}, a^{-4}, 3a^{-3}, 1, a^{8}, and a^{10} with a > 0$ is A. 5 B. 13 C. 8 D. 11 **Answer:**

5. Let n be an odd integer . If
$$\sin n heta = \sum_{r=0}^{n} b_r \sin^r heta$$
 for all real $heta$ is

A.
$$b_0 = 1, b_1 = 3$$

B.
$$b_0 = 0, b_1 = n$$

$$c. b_0 = -1, b_1 = n$$

D.
$$b_0 = 0$$
, $b_1 = n^2 - 3n + 3$

Watch Video Solution

6. The circle passing through the point (-1,0) and touching the y-axis at

(0,2) also passes through the point (A) (-3/2,0) (B) (-5/2,2) (C) (-3/2,5/2) (D)

A.
$$\left(-\frac{3}{2},0\right)$$

C.
$$\left(-\frac{3}{2}, \frac{5}{2}\right)$$

B. $\left(-\frac{5}{2},2\right)$

Answer:

Watch Video Solution

7. Let P(6,3) be a point on the hyperbola parabola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

A.
$$\sqrt{\frac{5}{2}}$$

$$\sqrt{rac{3}{2}}$$

C.
$$\sqrt{2}$$

D.
$$\sqrt{3}$$

Answer:

8. Let P(x) be a polynomial of least degree whose graph has three points of inflection (-1,-1),(1.1) and a point with abscissa 0 at which the curve is inclined to the axis of abscissa at an angle of 60° . Then find the value of $\int_0^1 p(x) dx$.

A.
$$\frac{3\sqrt{3}+4}{14}$$

B. `frac(3sqrt3)(7)

$$\mathsf{C.}\ \frac{\sqrt{3}+\sqrt{7}}{14}$$

$$\text{D.}\ \frac{\sqrt{3}+2}{7}$$

Answer:

B.
$$z+ar{z}=1$$

C. $|z+ar{z}|=1$

A. $|z+ar{z}|=rac{1}{2}$

Answer:

Watch Video Solution

number of ordered triplets (a, b, c) such 10. The

 $L.\ C.\ M.\ (a,b)=1000, L.\ C.\ M.\ (b,c)=2000$ and $L.\ C.\ M.\ (c,a)=2000$

that

- A. 70
- B. 80
 - C. 90
 - D. None of these

Answer:

11. If m things are distributed among a men and b women. Then the probability that number of things received by men is odd is

- A. 3b
- B. 4b
- C. 2b
- D.b

Answer:

Watch Video Solution

12. Solve for x : $4^x 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$.

- A. 0
- B. 1

C. 2

D. None of these

Answer:

Watch Video Solution

13. The equation, $2x^2+3y^2-8x-18y+35=K$ represents

A. no locus if k gt 0

B. an ellipse if k lt 0

C. a point if k =0

D. a hyperbola if k gt 0

Answer:

14. If f be decreasing continuous function satisfying

$$f(x+y)=f(x)+f(y)-f(x)f(y)Yx,$$
 $yarepsilon R,$ $f'(0)=1$ then $\int_0^1 f(x)dx$ is

- A. 1
- B.1-e
- $\mathsf{C.}\,2-e$
- D. 2

Answer:

- **15.** The co-ordinates of the points on the barabola $y^2=8x$, which is at minium distance from the circle $x^2+\left(y+6\right)^2=1$ are
 - A. (2,-4)
 - B. (18,-12)

C. -2.4

D. None of these

Answer:

Watch Video Solution

16. Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be three non zero vector such that no two of these are collinear. If the vector $\overrightarrow{a}+2\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b}+3\overrightarrow{c}$ $iscol\in earwith$ veca (lamda $be\in gsomenonzeroscalar)then$ veca\+2vecb+6veccequals(A)lamdaveca (B)lamdavecb(C)lamdavecc` (D) 0

A. 0

 $\operatorname{B.}\lambda \overset{\longrightarrow}{b}$

 $\mathsf{C}.\,\lambda\overrightarrow{c}$

D. $\lambda \overrightarrow{a}$

Watch Video Solution

17. If a chord, which is not a tangent, of the parabola $y^2=16x$ has the equation 2x+y=p, and midpoint (h,k), then which of the following is (are) possible value(s) of p,h and k?

Answer:

18. If
$$b^2>4ac$$
, then $aig(x^2+4x+4ig)^2+big(x^2+4x+4ig)+c=0$ has distinct real roots if :

A. blt alt Olt c

B. alt blt Olt c

C. blt Olt alt c

D. None of these

Answer:

19.
$$\lim_{n \to \infty} \prod_{r=3}^{n} \frac{r^3 - 8}{r^3 + 8}$$

B.
$$\frac{3}{7}$$

D.
$$\frac{6}{7}$$

Watch Video Solution

- **20.** If $x+\frac{1}{x}=1$ and $p=x^{100}+\frac{1}{x^{1000}}$ and q be the digit at unit place in the number $2^{2^n}+1, n\in N \,\, ext{and} \,\, n>1$, then p+q is equal to
 - A. 8
 - B. 6
 - C. 7
 - D. 0

Answer:

21. A conical vessel is to be prepared out of a circular sheet of metal of unit radius in order that the vessel has maximum value, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 , then $\frac{A_2}{A_1}$ is equal to

A.
$$2+\sqrt{3}$$

$$\mathsf{B.}\,2+\sqrt{6}$$

$$\mathsf{C.}\,3+\sqrt{6}$$

D.
$$3+\sqrt{2}$$

Answer:

Watch Video Solution

22. Maximum number area of rectangle whose two sides are

 $x=x_0, x=\pi-x_0$ and which is inscribed in a region bounded by y=sin

x and X-axis is obtained when $x_0 \in$

A.
$$\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$$

$$\mathsf{B.}\left(\frac{\pi}{6},\frac{\pi}{4}\right)$$

$$\mathsf{C.}\left(0,\,\frac{\pi}{6}\right)$$

D. None of these

Answer:

23. In a binomial distribution
$$B\bigg(n,p=\frac14\bigg)$$
 , if the probability of at least one success is greater than or equal to $\frac9{10}$, then n is greater than (1)

one success is greater than or equal to
$$\frac{1}{10}$$
, then h is greater than (1)
$$\frac{1}{(\log)_{10}^4 - (\log)_{10}^3}$$
 (2)
$$\frac{1}{(\log)_{10}^4 + (\log)_{10}^3}$$
 (3)
$$\frac{9}{(\log)_{10}^4 - (\log)_{10}^3}$$
 (4)

A.
$$\frac{1}{\log_{10} 4 + \log_{10} 3}$$

B.
$$\dfrac{9}{\log_{10}4-\log_{10}3}$$

C.
$$\frac{4}{\log_{10} 4 - \log_{10} 3}$$

D.
$$\frac{1}{\log_{10} 4 - \log_{10} 3}$$

Watch Video Solution

- **24.** The equation of tangent to the curve $y=\int_{r^2}^{x^3} \frac{dt}{1+t^2}$ at x=1 is $\sqrt{3}x+1=y$ (b) $\sqrt{2}y+1=x$ $\sqrt{3}x+y=1$ (d) $\sqrt{2}y=x$
 - A. $\sqrt{2}y + 1 = x$
 - B. $\sqrt{3}x + 1 = y$
 - C. $\sqrt{3}x + 1 + \sqrt{3} = u$
 - D. None of these

Answer:

25. Find the value of $\int_{-1}^{1} \left[x^2 + \{x\}\right] dx$, $where[.]and\{.\}$ denote the greatest function and fractional parts of x, respectively.

A.
$$\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{2}$$

B.
$$\dfrac{\sqrt{5}\Big(\sqrt{5}-1\Big)}{2}$$

$$\mathsf{C.} - \frac{\sqrt{5} \Big(\sqrt{5} + 1\Big)}{2}$$

D.
$$\frac{3-\sqrt{5}}{2}$$

Answer:

