©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

APPLICATION OF INTEGRALS

Others

1. The area enclosed between the curves
$y^{2}=x a n d y=|x|$ is (1) $2 / 3$ (2) 1 (3) $1 / 6$ (4) $1 / 3$
2. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$

- Watch Video Solution

3. The area of the region bounded by the parabola $(y 2)^{2}=x 1$, the tangent to the
parabola at the point $(2,3)$ and the xaxis is (1)
$3(2) 6(3) 9(4) 12$

D View Text Solution
4. The area bounded by the curves
$y=\cos x a n d y=\sin x \quad$ between \quad the
cordinates $x=0$ andx $=\frac{3 \pi}{2}$ is (1) $4 \sqrt{2}-2$
(2) $4 \sqrt{2} 1$ (3) $4 \sqrt{2}+1$ (4) $4 \sqrt{2} 2$

D Watch Video Solution

5. Let I be the purchase value of an equipment
and $V(t)$ be the value after it has been used for
t years. The value $\mathrm{V}(\mathrm{t})$ depreciates at a rate given by differential equation $\frac{d V(t)}{d t}=-\mathrm{k}(\mathrm{T}-\mathrm{t})$, where $k>0$ is a constant and T is the total
life in years of the equipment. Then the scrap value $\mathrm{V}(\mathrm{T})$ of the equipment is: (1) $T^{2}-\frac{1}{k}$ (2)

$$
I-\frac{k T^{2}}{2} \text { (3) } I-\frac{k(T-t)^{2}}{2} \text { (4) } e^{-k T}
$$

A.
B. null

C. null

D. null

Answer: null

- Watch Video Solution

6. The area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive x-axis is (1) $\frac{1}{2}$ square units (2) 1 square units
(3) $\frac{3}{2}$ square units (4) $\frac{5}{2}$ square units
7. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line
$y=2$ is (1) $20 \sqrt{2}$ (2) $\frac{10 \sqrt{2}}{3}$ (3) $\frac{20 \sqrt{2}}{3}$
$10 \sqrt{2}$

D Watch Video Solution

8. The area (in square units) bounded by the
curves $y=\sqrt{x}, 2 y-x+3=0, \quad x$-axis, and lying in the first quadrant is
9. Statement - I : The value of the integral $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}$ is equal to $\frac{\pi}{6}$. Statement -

$$
\begin{equation*}
\text { II : } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \tag{1}
\end{equation*}
$$

Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for

Statement-I (2) Statement -I is True; Statement
-II is False.(3) Statement -I is False; Statement II is True (4) Statement -I is True; Statement -II
is True; Statement-II is a correct explanation
for Statement-I

View Text Solution

