©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

QUESTION PAPER 2020

Part I Mathematics

1. Let $[\mathrm{x}$] be the greatest integer less than or equal to x , for a real number x . Then the equation $\left[x^{2}\right]=x+1$ has
A. two solutions
B. one solution
C. no solution
D. more than two solutions

Answer: C

- Watch Video Solution

2. Let $p_{1}(x)=x^{3}-2020 x^{2}+b_{1} x+c_{1} \quad$ and $p_{2}(x)=x^{3}-2021 x^{2}+b_{2} x+c^{2}$ be polynomials having two common roots α and β. Suppose there exist polynomials $q_{1}(x)$ and $q_{2}(x)$ such that $p_{1}(x) q_{1}(x)+p_{2}(x) q_{2}(x)=x^{2}-3 x+2$. Then the correct identity is
A. $p_{1}(3)+p_{2}(1)+4028=0$
B. $p_{1}(3)+p_{2}(1)+4026=0$
C. $p_{1}(2)+p_{2}(1)+4028=0$
D. $p_{1}(1)+p_{2}(2)+4028=0$

(D) Watch Video Solution

3. Suppose p, q, r are positive rational numbers such that $\sqrt{p}+\sqrt{q}+\sqrt{r}$ are irrational. Then
A. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
B. $\sqrt{p q} \sqrt{p r}, \sqrt{q r}$ are rational, but $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
C. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are rational
D. $\sqrt{p q} \sqrt{p r} \sqrt{q r}$ are irrational

Answer: C

4. Let A, B, C be three points on a circle of radius 1 such that $\angle A C B=\frac{\pi}{4}$. Then the length of the side AB is
A. $\sqrt{3}$
B. $\frac{4}{3}$
C. $\frac{3}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: D

D Watch Video Solution

5. Let x and y be two positive real numbers such that $x+y=1$.

Then the minimum value of $\frac{1}{x}+\frac{1}{y}$ is-
A. 2
B. $\frac{5}{2}$
C. 3
D. 4

Answer: D

- Watch Video Solution

6. Let $A B C D$ be a quadrilateral such that there exists a point E inside the quadrilateral satisfying $A E=B E=C E=D E$. Suppose
$\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set ($\angle D A B, \angle A B C, \angle B C D$) is :-
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

7. The number of ordered pairs (x, y) of positive integers satisfying $2 x+3 y=5^{\mathrm{xy}}$ is
A. 1
B. 2
C. 5
D. infinite

Answer: A

8. If all the natural numbers from 1 to 2021 are written as 12345.....20202021, then find the 2021st term
A. 0
B. 1
C. 6
D. 9

Answer: B

- Watch Video Solution

9. In a triangle $A B C$, a point D is chosen on $B C$ such that $B D$: $D C$
$=2$: 5. Let P be a point on the circumcircleABC such that
$\angle P D B=\angle B A C$. Then $\mathrm{PD}: \mathrm{PC}$ is :-
A. $\sqrt{2}, \sqrt{5}$
B. $2: 5$
C. $2: 7$
D. $\sqrt{2}: \sqrt{7}$

Answer: D

- Watch Video Solution

10. Let $[x]$ be the greatest integer less than or equal to x, for a real number x . Then the following sum

$$
\begin{aligned}
& {\left[\frac{2^{2020}+1}{2^{2018}+1}\right]+\left[\frac{3^{2020}+1}{3^{2018}+1}\right]+\left[\frac{4^{2020}+1}{4^{2018}+1}\right]+} \\
& {\left[\frac{5^{2020}+1}{5^{2018}+1}\right]+\left[\frac{6^{2020}+1}{6^{2018}+1}\right]}
\end{aligned}
$$

is-
A. 80
B. 85
C. 90
D. 95

Answer: C

- Watch Video Solution

11. Let r be the remainder when 2021^{2020} is divided by 2020^{2}.

Then r lies between
A. 0 and 5
B. 10 and 15
C. 20 and 100

Answer: A

- Watch Video Solution

12. In a triangle $A B C$, the altitude $A D$ and the median $A E$ divide
$\angle A$ into three equal parts. If $\mathrm{BC}=28$, then the nearest integer to $A B+A C$ is
A. 38
B. 37
C. 36
D. 33

Answer: A
13. The number of permutations of the letters $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ in which the first letter a_{1} does not occupy the first position (from the left) and the second letter a_{2} does not occupy the second position (from the left) is
A. 96
B. 78
C. 60
D. 42

Answer: B

14. In a book self if m books have black cover and n books have blue cover and all books are different, then the number of ways black books can be arranged side by side are
A. $m!n!$
B. $m!(n+1)$!
C. $(n+1)$!
D. $(m+n)$!

Answer: B

D Watch Video Solution

15. Let's say abcde is a 5 digit number which when multiplied by

9 new number formed is edcba then sum $a+b+c+d+e$
A. 18
B. 27
C. 36
D. 45

Answer: B

- Watch Video Solution

Part li Mathematics

1. The maximum concentration of harmuful chemicals is expected to be found in organisms
A. at the bottom of a food chain
B. at the middle of a food chain
C. at the top of a food chain
D. at any level in a food chain

Answer: C

- Watch Video Solution

2. The genome of SARS - Co V2 is composed of
A. double stranded DNA.
B. double stranded RNA.
C. single stranded DNA.
D. single stranded RNA.

Answer: D

3. Let A denote the set of all 4-digit natural numbers with no digit being 0 . Let $B \subset A$ consist of all numbers x such that no permutation of the digits of x gives a number that is divisible by 4. Then the probability of drawing a number from B with all even digits is
A. $\frac{625}{1641}$
B. $\frac{16}{641}$
C. $\frac{16}{1641}$
D. $\frac{1000}{1641}$

Answer: C

4. Let $A B C$ be a triangle such that $A B=4, B C=5$ and $C A=6$.

Choose points D, E, F on $A B, B C, C A$ respectively, such that $A D=2$, $\mathrm{BE}=3, \mathrm{CF}=4$. Then $\frac{\operatorname{area} \triangle D E F}{\operatorname{area} \triangle A B C}$ is
A. $\frac{1}{4}$
B. $\frac{3}{15}$
C. $\frac{4}{15}$
D. $\frac{7}{30}$

Answer: C

- Watch Video Solution

5. The number of ordered pairs (x, y) of integers satisfying

$$
x^{3}+y^{3}=65 \text { is }
$$

A. 0
B. 2
C. 4
D. 6

Answer: B

- Watch Video Solution

6. A bottle in the shape of a right-circular cone with height h contains some water. When its base is placed on a flat surface, the height of the vertex from the water level is a units. When it is kept upside down, the height of the base from the water level is $\frac{a}{4}$ units. Then the ratio $\frac{h}{a}$ is
A. $\frac{1+\sqrt{85}}{4}$
B. $\frac{1+\sqrt{85}}{8}$
C. $\frac{1+\sqrt{65}}{4}$
D. $\frac{1+\sqrt{65}}{8}$

Answer: B

(D) Watch Video Solution

7. Consider the following two statements :
I. if n is a composite number, then n divides ($n-1$)!
II. There are infinitely many natural numbers n such that $n^{3}+2 n^{2}+n$ divides $n!$.

Then
A. I and II are true
B. I and II are false
C. I is true and II is false
D. I is false and II is true

Answer: D

- Watch Video Solution

Part I Mathematics

1. Consider the following statements :
I. $\lim _{n \rightarrow \infty} \frac{2^{n}+(-2)^{n}}{2^{n}}$ dos not exist
II. $\lim _{n \rightarrow \infty} \frac{3^{n}+(-3)^{n}}{2^{n}}$ does not exist then
A. I is true and II is fals
B. I is false and II is true
C. I and II are true
D. neither I nor II is true

Answer: A

- Watch Video Solution

2. Consider a regular 10-gon with its vertices on the unit circle.

With one vertex fixed, draw straight lines to the other 9
vertices. Call them $L_{1}, L_{2}, \ldots, L_{9}$ and denote their lengths by
$l_{1}, l_{2}, \ldots, l_{9}$ respectively. Then the product $l_{1}, l_{2}, \ldots, l_{9}$ is
A. 10
B. $10 \sqrt{3}$
C. $\frac{50}{\sqrt{3}}$
D. 20

(D) Watch Video Solution

3. The value of the integral
$\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+e^{x}} d x$
is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi^{2}}{2}$

Answer: B

4. Let \mathbb{R} be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^{8} x+\cos ^{4} x+\cos ^{4} x+\cos ^{2} x+1\right)$ for x $\in \mathbb{R}$. Let $S=\{\lambda \in \mathbb{R} \mid$ there exits a point $c \in(0,2)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$. then
A. $S=\mathbb{R}$
B. $S=\{0\}$
C. $S=[0,2 \pi]$
D. S is a finite set having more than one element

Answer: A

(D) Watch Video Solution
5. A person standing on the top of a building of height $60 \sqrt{3}$ feel observed the top of a tower to lie at an elevation of 45°.

That person descended to the bottom of the building and found that the top of the same tower is now at an angle of elevation of 60°. The height of the tower (in feet) is
A. 30
B. $30(\sqrt{3}+1)$
C. $90(\sqrt{3}+1)$
D. $150(\sqrt{3}+1)$

Answer: C

6. Assume that $3.313 \leq \pi \leq 3.15$. The integer closest to the value of $\sin ^{-1}(\sin 1 \cos 4+\cos 1 \sin 4)$. Where 1 and 4 appearing in sin and cos are given in radians, is
A. -1
B. 1
C. 3
D. 5

Answer: A

- Watch Video Solution

7. The maximum value of the function $f(x)=e^{x}+x \ln \mathrm{x}$ on the interval $1 \leq x \leq 2$ is
A. $e^{2}+I n 2+1$
B. $e^{2}+2 \operatorname{In} 2$
C. $e^{\pi / 2}+\frac{\pi}{2} \operatorname{In} \frac{\pi}{2}$
D. $e^{3 / 2}+\frac{3}{2} \operatorname{In} \frac{3}{2}$

Answer: B

- Watch Video Solution

8. Let A be a 2×2 matrix of the form $A=\left[\begin{array}{ll}a & b \\ 1 & 1\end{array}\right]$, where a, b are integers and $-50 \leq b \leq 50$. The number of such matrices

A such that A^{-1}, the inverse of A , exists and A^{-1} contains only integer entries is
A. 101
B. 200
C. 202
D. 101^{2}

Answer: C

- Watch Video Solution

9. Let $A=\left(a_{i j}\right)_{1 \leq I, j \leq 3}$ be a 3×3 invertible matrix where each $a_{i j}$ is a real number. Denote the inverse of the matrix A by A^{-1}. If $\Sigma_{j=1}^{3} a_{i j}=1$ for $1 \leq i \leq 3$, then
A. sum of the diagonal entries of A is 1
B. sum of each row of A^{-1} is 1
C. sum of each row and each column of $A^{-} 1$ is 1
D. sum of the diagonal entries of A^{-1} is 1

(D) Watch Video Solution

10. Let x, y be real numbers such that $x>2 y>0$ and
$2 \log (x-2 y)=\log x+\log y$.
Then the possible values (s) of $\frac{x}{y}$
A. is 1 only
B. are 1 and 4
C. is 4 only
D. is 8 only

Answer: C

11. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(b<a)$. Be an ellipse with major axis AB and minor axis CD. Let F_{1} and F_{2} be its two foci, with A, F_{1}, F_{2} B in that order on the segment $A B$. Suppose $\angle F_{1} C B=90^{\circ}$. The eccentricity of the ellipse is
A. $\frac{\sqrt{3}-1}{2}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{5}-1}{2}$
D. $\frac{1}{\sqrt{5}}$

Answer: C

12. Let A denote the set of all real numbers x such that $x^{3}-[x]^{3}=(x-[x])^{3}$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x. Then
A. A is a discrete set of at least two points
B. A contains an interval, but is not an interval
C. A is an interval, but a proper subset of $(-\infty, \infty)$
D. $A=(-\infty, \infty)$

Answer: B

D Watch Video Solution

13. $\mathrm{S}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{\sqrt{n^{2}+k^{2}}}$
A. does not exist
B. exists and lies in the interval $(0,1)$
C. exists and lies in the interval [1, 2)
D. exists and lies in the interval $[2, \infty)$

Answer: C

- Watch Video Solution

14. Let \mathbb{R} be the set of all real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose $|f(x)-f(y)| \geq|x-y|$ for all real numbers x and y . Then
A. f is one-one, but need not be onto
B. f is onto, but need not be one-one
C. f need not be either one-one or onto
D. f is one-one and onto

Answer: B

(D) Watch Video Solution

15. Let
$f(x)= \begin{cases}\frac{x}{\sin x}, & x \in(0,1) \\ 1, & x=0\end{cases}$
Consider the integral
$I_{n}=\sqrt{n} \int_{0}^{1 / n} f(x) e^{-n x} d x$.
Then $\lim _{n \rightarrow \infty} I_{n}$
A. does not exist
B. exists and is 0
C. exists and is 1
D. exists and is $1-e^{-1}$

Answer: B

(D) Watch Video Solution

16. The value of the integral
$\int_{1}^{3}\left((x-2)^{4} \sin ^{3}(x-2)+(x-2)^{2019}+1\right) d x$
is
A. 0
B. 2
C. 4
D. 5

(Watch Video Solution

17. In a regular 15 -sided polygon with all its diagonals drawn, a diagonal is chosen at random. The probability that it is either a shortest diagonal nor a longest diagonal is
A. $\frac{2}{3}$
B. $\frac{5}{6}$
C. $\frac{8}{9}$
D. $\frac{9}{10}$

Answer: A

- View Text Solution

18. Let $M=2^{30}-2^{15}+1$, and M^{2} be expressed in base 2 . The number of 1 's in this base 2 representation of M^{2} is
A. 29
B. 30
C. 59
D. 60

Answer: B

- Watch Video Solution

19. Let $A B C$ be a triangle such that $A B=15$ and $A C=9$. The bisector of $\angle B A C$ meets BC in D . If $\angle A C B=2 \angle A B C$, then $B D$ is
A. 8
B. 9
C. 10
D. 12

Answer: C

- Watch Video Solution

20. The figur in the complex plane given by

$$
10 z \bar{z}-3\left(z^{2}+\bar{z}^{2}\right)+4 i\left(z^{2}-\bar{z}^{2}\right)=0
$$

is
A. a straight line
B. a circle
C. a parabola
D. an ellipse

Answer: A

- Watch Video Solution

Part li Mathematics

1. Let $a=\sum_{n=101}^{200} 2^{n} \sum_{k=101}^{n} \frac{1}{K!}$ and $b=\sum_{n=101}^{200} \frac{2^{201}-2^{n}}{n!}$
then $\frac{a}{b}$ is
A. 1
B. $\frac{3}{2}$
C. 2
D. $\frac{5}{2}$

Answer: A

- View Text Solution

2. Let a, b, c be non-zero real roots of the equation $x^{3}+a x^{2}+b x+c=0$. Then
A. there are infinitely many such triples a, b, c
B. there is exactly one such triple a, b, c
C. there are exactly two such triples a, b, c
D. there are exactly three such triples a, b, c

Answer: C

3. Let $f(x)=\sin x+\left(x^{3}-3 x^{2}+4 x-2\right) \cos x$ for x in $(0,1)$.

Consider the following statements
I. f has a zero in $(0,1)$
II. f is monotone in $(0,1)$

Then

A. I and II are true
B. I is true and II are false
C. I is false and II are true
D. I and II are false

Answer: A

4. Let A be a set consisting of 10 elements. The number of nonempty relations from A to A that are reflexive but not symmetric is
A. $2^{89}-1$
B. $2^{89}-2^{45}$
C. $2^{45}-1$
D. $2^{90}-2^{45}$

Answer: D

- Watch Video Solution

5. In a triangle ABC , the angle bisector BD of $\angle B$ intersects AC in D. Suppose $B C=2, C D=1$ and $B D=\frac{3}{\sqrt{2}}$. The
perimeter of the triangle $A B C$ is
A. $\frac{17}{2}$
B. $\frac{15}{2}$
C. $\frac{17}{4}$
D. $\frac{15}{4}$

Answer: B

- Watch Video Solution

6. Len N be set of natural numbers. For $n \in N$ define

$$
I_{n}=\int_{0}^{\pi} \frac{x \sin ^{2 n}(x)}{\sin ^{2 n}(x)+\cos ^{2 n}(x)} d x
$$

Then for $m, n \in N$
A. $I_{m}<I_{n}$ for all $m<n$
B. $I_{m}>I_{n}$ for all $m<n$
C. $I_{m}=I_{n}$ for all $m \neq n$
D. $I_{m}<I_{n}$ for some $m \leq n$ and $I_{m}>I_{n}$ for some $m<n$

Answer: C

- Watch Video Solution

7. for $\theta \in[0, \pi]$, let $f(\theta)=\sin (\cos \theta)$ and $g(\theta)=\cos (\sin \theta)$.

Let a
$\max _{0 \leq \theta \leq \pi} f(\theta), b=\min _{0 \leq \theta \leq \pi} f(\theta), c=\max _{0 \leq \theta \leq \pi} g(\theta)$ and $d=\min _{0 \leq \theta \leq \pi} g(\theta)$
. the correct inequalities satisfied by ${ }^{`} \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are
A. $b<d<c<a$
B. $d<b<a<c$
C. $b<d<a<c$
D. $b<a<d<c$

Answer: C

- Watch Video Solution

8. Six consecutive sides of an equiangular octagon are $6,9,8,7$,

10, 5 in that order. The integer nearest to the sum of the remaining two sides is
A. 17
B. 18
C. 19
D. 20
9. The value of the integral
$\int_{1}^{\sqrt{2}+1}\left(\frac{x^{2}-1}{x^{2}+1}\right) \frac{1}{\sqrt{1+x^{4}}} d x$ is
A. $\frac{\pi}{6 \sqrt{2}}$
B. $\frac{\pi}{12 \sqrt{2}}$
C. $\frac{\pi}{8 \sqrt{2}}$
D. $\frac{\pi}{4 \sqrt{2}}$

Answer: B

10. Let $a=B C, b=C A, c=A B$ be side lengths of a triangle $A B C$.

And m be the length of the median through A. If $a=8, b-c=2, m$
$=6$, then the nearest integer to b is
A. 7
B. 8
C. 9
D. 10

Answer: B

