©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

SOLVED PAPER 2019

Example

1. The number of four-letter words that can be formed, with
letters a,b,c such that all three letters occur is
A. 30
B. 36
C. 81
D. 256

Answer:

- Watch Video Solution

2. Let $A=\left\{\begin{array}{c}\theta \in R:\left(\frac{1}{3} \sin (\theta)+\frac{2}{3} \cos (\theta)\right)^{2} \\ =\frac{1}{3} \sin ^{2}(\theta)+\frac{2}{3} \cos ^{2}(\theta)\end{array}\right\}$ Then
A. $A \cap[0, \pi]$ is an empty set
B. $A \cap[0, \pi]$ has exactly one point
C. $A \cap[0, \pi]$ has exactly two points
D. $A \cap[0, \pi]$ has more than two points

Answer:

3. The area of the region bounded by the lines $x=1, x=2$ and the curves $x\left(y-e^{x}\right)=\sin x$ and $2 x y=2 \sin x+x^{3}$ is
A. $e^{2}-e-\frac{1}{6}$
B. $e^{2}-e-\frac{7}{6}$
C. $e^{2}-e+\frac{1}{6}$
D. $e^{2}-e+\frac{7}{6}$

Answer:

(Watch Video Solution

4. Let $A B$ be a line segment with midpoint C, and D be the midpoint of AC. Let C_{1} be the circle with diameter AB and C_{2}
be the circle with diameter AC . Let E be a point on C_{1} such that EC is perpendicular to AB . Let f be a point on C_{2} such that DF is perpendicular to AB . Then, the value of $\sin \angle F E C$ is

> A. $\frac{1}{\sqrt{10}}$
> B. $\frac{2}{\sqrt{10}}$
> C. $\frac{1}{\sqrt{13}}$
> D. $\frac{2}{\sqrt{13}}$

Answer:
5. The number of integers x satisfying
$-3 x^{4}+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^{2} \\ 1 & x^{2} & x^{4} \\ 1 & x^{3} & x^{6}\end{array}\right]=0$ is equal to
A. 1
B. 2
C. 5
D. 8

Answer:

Watch Video Solution

6. Let P be a non-zero polynomial such that $P(1+x)=P(1-x)$ for all real x , and $\mathrm{P}(1)=0$. Let m be the
largest integer such that $(x-1)^{m}$ divides $\mathrm{P}(\mathrm{x})$ for all such $P(x)$. Then m equals
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

7. Let $f(x)=\left\{\begin{array}{ll}x \sin \left(\frac{1}{x}\right) & \text { when } x \neq 0 \\ 1 & \text { when } x=0\end{array} \quad\right.$ and $A=\{x \in R: f(x)=1\}$. Then A has
A. exactly one element
B. exactly two elements
C. exactly three elements
D. infinitely many elements

Answer:

- Watch Video Solution

8. Let S be a subset of the plane defined by: $S=\{(x, y):|x|+2|y|=1\}$ Then the radius of the smallest circle with centre at the origin and having nonempty intersection with S is
A. $\frac{1}{5}$
B. $\frac{1}{\sqrt{5}}$
C. $\frac{1}{2}$
D. $\frac{2}{\sqrt{5}}$

Answer:

- Watch Video Solution

9. The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is
A. 7
B. 13
C. 19
D. 25

Answer:

(D) Watch Video Solution

10. Among all the parallelograms whose diagonals are 10 and 4, the one having maximum area has its perimeter lying in the interval
A. [19.20]
B. $[20,21]$
C. $[21,22]$
D. $[22,23]$

Answer:

11. The number of ordered pairs (a, b) of positive integers such that $\frac{2 a-1}{b}$ and $\frac{2 b-1}{a}$ are both integers is
A. 1
B. 2
C. 3
D. more than 3

Answer:

Watch Video Solution

12. Let $z=x+i y$ and $w=u+i v$ be two complex numbers, such that $|z|=|w|=1$ and $z^{2}+w^{2}=1$. Then,
the number of ordered pairs (z, w) is equal to (where, $x, y, u, v \in R$ and $\left.i^{2}=-1\right)$
A. 0
B. 4
C. 8
D. infinite

Answer:

- Watch Video Solution

13. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be planes passing through the origin. Assume that σ_{1} is perpendicular to the vector $(1,1,1), \sigma_{2}$ is perpendicular to a vector $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and σ_{3} is perpendicular to
the vector $\left(a^{2}, b^{2}, c^{2}\right)$. What are all the positive values of a, b and c so that $\sigma_{1} \cap \sigma_{2} \cap \sigma_{3}$ is a single point?
A. Any positive value of a, b, and c other than 1
B. Any positive values of a, b and c where either

$$
a \neq b, b \neq c \text { or } a \neq c
$$

C. Any three distinct positive values of a, b and c
D. There exist no such positive real numbers $\mathrm{a}, \mathrm{b}, \mathrm{and} \mathrm{c}$

Answer:

- Watch Video Solution

14. Ravi and Rashmi are each holding 2 red cards and 2 black
cards (all four red and all four black cards are identical). Ravi
picks a card at random from Rashmi, and then Rashmi picks a card at random from Ravi. This process is repeated a second time. Let p be the probability that both have all 4 cards of the same colour. Then p satisfies
A. $p \leq 5 \%$
B. $5 \%<p \leq 10 \%$
C. $10 \%<p \leq 15 \%$
D. $15 \%<p$

Answer:

(Watch Video Solution

15. Let A_{1}, A_{2} and A_{3} be the region on R^{2} defined by

$$
A_{1}=\left\{(x, y): x \geq 0, y \geq 0,2 x+2 y-x^{2}-y^{2}>1>x+y\right\}
$$

,$A_{2}=\left\{(x, y): x \geq 0, y \geq 0, x+y>1>x^{2}+y^{2}\right\}$, $A_{3}=\left\{(x, y): x \geq 0, y \geq 0, x+y>1>x^{3}+y^{3}\right\}$. Denote by $\left|A_{1}\right|,\left|A_{2}\right|$, and $\left|A_{3}\right|$ respectively. Then
A. $\left|A_{1}\right|>\left|A_{2}\right|>\left|A_{3}\right|$
B. $\left|A_{1}\right|>\left|A_{3}\right|>\left|A_{2}\right|$
C. $\left|A_{1}\right|=\left|A_{2}\right|>\left|A_{3}\right|$
D. $\left|A_{1}\right|=\left|A_{3}\right|>\left|A_{2}\right|$

Answer:

- Watch Video Solution

16. Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^{2}\right)=f\left(x^{3}\right)$ for all $x \in R$. Consider the following
statements. I. f is an odd function. II. f is an even function. III.
f is differentiable everywhere Then
A. I is true and III is false
B. II is true and III is false
C. both I and III are true
D. both II and III are true

Answer:

- Watch Video Solution

17. Suppose a continuous function $f:[0, \infty) \rightarrow R$ satisfies
$f(x)=2 \int_{0}^{x} t f(t) d t+1$ for all $x \geq 0$ Then $\mathrm{f}(1)$ equals
A. e
B. e^{2}
C. e^{4}
D. e^{6}

Answer:

- Watch Video Solution

18. Let $a>0, a \neq 0$. Then the set S of all positive real numbers b satisfying $\left(1+a^{2}\right)\left(1+b^{2}\right)=4 a b$ is
A. an empty set
B. a singleton set
C. a finite set containing more than one element
D. $(0, \infty)$

Answer:

(Watch Video Solution

19. Let $f: R \rightarrow R$ be function defined by
$f(x)=\left\{\begin{array}{ll}\frac{\sin \left(x^{2}\right)}{2} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ Then, at $\mathrm{x}=0, \mathrm{f}$ is
A. not continuous
B. continuous but not differentiable
C. differentiable and the derivative is not continuous
D. differentiable and the derivative is continuous.

Answer:

20. The points C and D on a semicircle with $A B$ as diameter are such that $A C=1, C D=2$, and $D B=3$. Then the length of $A B$ lies in the interval
A. $[4,4.1]$
B. [4.1,4.2]
C. [4.2,4.3]
D. $[4.3, \infty]$

Answer:

- Watch Video Solution

21. Let $f(x)=x^{6}-2 x^{5}+x^{3}+x^{2}-x-1 \quad$ and $g(x)=x^{4}-x^{3}-x^{2}-1$ be two polynomials. Let a,b,c and
d be the roots of $g(x)=0$. Then the value of $f(a)+f(b)+f(c)+f(d)$ is
A. -5
B. 0
C. 4
D. 5

Answer:

- Watch Video Solution

22. The number of solutions
$\sin \left(\pi \sin ^{2}(\theta)\right)+\sin \left(\pi \cos ^{2}(\theta)\right)=2 \cos \left(\frac{\pi}{2} \cos (\theta)\right)$
satisfying $0 \leq \theta \leq 2 \pi$ is
A. 1
B. 2
C. 4
D. 7

Answer:

D Watch Video Solution

23. Let $J=\int_{0}^{1} \frac{x}{1+x^{8}} d x$. Consider the following assertions: I. J>1/4II. J
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II is true

Answer:

- Watch Video Solution

24. Let $f:(-1,1) \rightarrow R$ be a differentiable function
satisfying $\left(f^{\prime}(x)\right)^{4}=16(f(x))^{2}$ for all $x \in(-1,1), \mathrm{f}(0)=0$.

The number of such functions is
A. 2
B. 3
C. 4
D. more than 4

- Watch Video Solution

25. Let A be the set of vectors $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ satisfying $\left(\sum_{i=1}^{3} \frac{a_{i}}{2^{i}}\right)^{2}=\sum_{i=1}^{3} \frac{a_{i}^{2}}{2^{i}}$ Then
A. A is empty
B. A contains exactly one element
C. A has 6 elements
D. A has infinitely many elements

Answer:

- Watch Video Solution

26. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $x^{2}+(f(x))^{2} \leq 1$ for all $x \in[0,1]$ and $\int_{0}^{1} f(x) d x=\frac{\pi}{4}$. Then $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{f(x)}{1-x^{2}} d x$ equals
A. $\frac{\pi}{12}$
B. $\frac{\pi}{15}$
C. $\frac{\sqrt{2}-1}{2} \pi$
D. $\frac{\pi}{10}$

Answer:

