©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 2

Exercise

1. A monkey of mass ' m ' climbs up to a rope
hung over a fixed pulley with an acceleration
relative to the rope $\mathrm{g} / 4$. The opposite end of
the rope is tied to a bock of mass M lying on a rough horizontal plane. The coeffient of friction between the block and horizontal plane is μ. Find the tension in the rope

$$
=\quad=\quad=-\infty
$$

A. $\frac{m(5 M-4 \mu M(g))}{4(M+m)}+\mu M g$
B. $\frac{m(5 M-4 \mu M) g}{4(M+m)}+\mu M g$
C. $\frac{M(5 m-5 \mu M) g}{4(M+m)}-\mu M g$

D. None of these

Answer:

D Watch Video Solution

2. Condenser A has a capacityof $15 \mu F$ when it
is filled with a medium of dielectric constant
3. Another condenser B has a capacity of $1 \mu F$
with air between the plates. Both are charged
separately by a battery of 100 V . After charging, both are connnected in parallel
without the battery and the dielectric medium being removed. The common potential now is
A. 400 V
B. 800 V
C. 1200 V
D. 1600 V

Answer:

D Watch Video Solution
3. When an object is placed at a distance of 25
cm from a mirror, the magnification is m_{1}. The object is moved 15 cm further away with respect to the earlier position, and the magnification becomes m_{2}. If $m_{1} / m_{2}=4$, the focal length of the mirror is
A. 10 cm
B. -30 cm
C. 15 cm
D. -20 cm

Answer:

D Watch Video Solution

4. Two wires are of same length and same area
of cross-section. If first wire has resistivity ρ_{1}
and temperature coefficient of resistance α_{1}
but second wire has resistivity ρ_{2} and temperature coefficient of resistance α_{2}. Their series equivalent resistance is independent of small temperature changes. Then
A. $\alpha_{1}+\alpha_{2}=0$

$$
\begin{aligned}
& \text { B. } \rho_{1} \alpha_{1}=\rho_{2} \alpha_{2} \\
& \text { C. } \rho_{1} \alpha_{1}+\rho_{2} \alpha_{2}=0 \\
& \text { D. } \rho_{1} \alpha_{2}+\rho_{2} \alpha_{1}=0
\end{aligned}
$$

Answer:

D Watch Video Solution

5. Conisder a system of three charges $q / 3, q / 3$ and $-2 q / 3$ placed at point A, B and C , respectively, as shown in the figure. Take O to
be centre of the circle of radius R and angle
$C A B=60^{\circ}$

A. The electric field at point O is $\frac{q}{8 \pi \epsilon_{0} R^{2}}$ directed along the negative x-axis.
B. The potential energy of the system is
zero
C. The magnitude of the force between the
charges at C and B is $\frac{q^{2}}{54 \pi \epsilon_{0} R^{2}}$
D. The potential at point O is $\frac{q}{12 \pi \epsilon_{0} R^{2}}$

Answer:

D Watch Video Solution

6. A wedged shaped air film having an angle of

40 second is illuminated by a monochramatic
light and the fringes are observed vertically down through a microscope. The fringe
separation between two consecutive bright fringes is 0.12 cm . The wavelength of light is
A. $5545 \AA$
B. $6025 \AA$
C. $4925 \AA$
D. $4655 \AA$

Answer:
(Watch Video Solution
7. A bimetallic strip is formed out of two identical strips one of copper and the other of brass. The co-efficients of linear expansion of the two metals are α_{C} and α_{B}. On heating, the the strip bends to form an are of radius of curvature R. Then R is
A. $t /\left(\alpha_{B}+\alpha_{C}\right) \Delta t$
B. $\Delta t /\left(\alpha_{B}+\alpha_{C}\right) t$
C. $t /\left(\alpha_{B}-\alpha_{C}\right) \Delta t$
D. $\frac{\left(\alpha_{B}-\alpha_{C}\right) t}{\Delta t}$

Answer:

D Watch Video Solution

8. A rocket is launched normal to the surface of the earth, away from the sun, along the line joining the sun and the earth. The sun is
3×10^{5} times heavier than the earth and is at a distance 2.5×10^{4} times larger than the radius of the earth. the escape velocity from earth's gravitational field is $u_{e}=11.2 \mathrm{kms}^{-1}$.

The minmum initial
velocity
$\left(u_{e}\right)=11.2 k m s^{-1}$. the minimum initial
velocity $\left(u_{s}\right)$ required for the rocket to be able to leave the sun-earth system is closest to
(Ignore the rotation of the earth and the presence of any other planet

$$
\begin{aligned}
& \text { A. } v_{s}=22 k m s^{-1} \\
& \text { B. } v_{s}=42 k m s^{-1} \\
& \text { C. } v_{s}=62 k m s^{-1} \\
& \text { D. } v_{s}=72 k m s^{-1}
\end{aligned}
$$

Answer:
9. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v at $t=0$. There is a region in which the magnetic field is absent as shown. The particle after entering the region collide elastically with a rigid wall. Time t after which the velocity of particle become antiparallel to its
initial velocity is -

A. $\frac{m}{2 q B}(\pi+4)$
B. $\frac{m}{q B}(\pi+2)$
C. $\frac{m}{4 q B}(\pi+2)$
D. $\frac{m}{4 q B}(2 \pi+3)$
10. For the circuit shown in the figure the rms
value of voltage across R and coil are E_{1} and
E_{2} respectively.
The power (thermal) developed across the coil is

> A. $\frac{E-E_{1}^{2}}{2 R}$
> B. $\frac{E-E_{1}^{2}-E_{2}^{2}}{2 R}$
> C. $\frac{E^{2}}{2 R}$
> D. $\frac{\left(E-E_{1}\right)^{2}}{2 R}$

Answer:

- Watch Video Solution

11. An electron of mass m and charge e initially at rest gets accelerated by a constant electric
field E. The rate of change of de-Broglie wavelength of this electron at time t ignoring relativistic effects is

$$
\begin{aligned}
& \text { A. } \frac{-h}{e E t^{2}} \\
& \text { B. } \frac{-e h t}{E} \\
& \text { C. } \frac{-m h}{e E t^{2}} \\
& \text { D. } \frac{-h}{e E}
\end{aligned}
$$

Answer:

D Watch Video Solution
12. A metal sphere of radius R and specific heat

C is rotated about an axis passing through its
centre at a speed n rotation/second. It is
suddenly stopped and 50% of its energy is
used in increasing its temperature, then find
the rise in temperature of the sphere
A. $\frac{2 \pi^{2} n^{2} R^{2}}{5 C}$
B. $\frac{\pi^{2} n^{2} R^{2}}{5 C}$
c. $\frac{2 \pi^{2} n^{2} R}{5 C}$
D. $\frac{\pi^{2} n^{2} R}{5 C}$

Answer:

- Watch Video Solution

13. A particle is thrown above, then correct $v-t$ graph will be
A.

B.

C.

D.

R

Answer:
14. The displacement of a particle is moving by
$x=(t-2)^{2}$ where x is in metres and t in
second. The distance covered by the particle in
first 4 seconds is.
A. 8 m
B. 4 m
C. 12 m
D. 16 m

- Watch Video Solution

15. A ring is cut from a platinum tube 8.5 cm internal and 8.7 cm external diameter. It is supported horizontally from a pan of a balance so that it comes in contact with the water in a glass vessel. If an extra 3.97 gm-wt.
is required to pull it away from water, the surface tension of water is
A. 71.23 dyne/cm
B. 72.13 dyne/cm

C. 31.27 dyne/cm

D. 21.37 dyne/cm

Answer:

D Watch Video Solution

16. A $10 k W$ drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg .

How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost
to the surrounding? Specific heat of aluminium $=0.91 \mathrm{~J} / g^{\circ} C$.
A. $10.23^{\circ} C$
B. $23.10^{\circ} C$
C. $103.02^{\circ} \mathrm{C}$
D. $301.02^{\circ} C$

Answer:
(Watch Video Solution
17. A particle starts from rest at $t=0$ and undergoes and acceleration (a) in $m s^{-2}$ with time (t) in seconds which is shown in Fig. 2 (DF) . 16 . Which one of the following plot represents velocity (v) (in $m s^{-1}$) verses time
(in seconds) ?

A.

B.

C.

D.

Answer:

D Watch Video Solution

18. A solid sphere having uniform charge density ρ and radius R is shown in figure. A spherical cavity ofradius $\frac{R}{2}$ is made in it.

What is the potential at point O ?

A. $\frac{11 R^{2} \rho}{24 \varepsilon_{0}}$
B. $\frac{5}{12} \frac{R^{2} \rho}{\varepsilon_{0}}$
C. $\frac{7 \rho R^{2}}{12 \varepsilon_{0}}$
D. $\frac{3}{2} \frac{R^{2} \rho}{\varepsilon_{0}}$

Answer:

- Watch Video Solution

19. A cylinder of radius R made of a material of
thermal conductivity K_{1} is surrounded by a cylindrical shell of inner radius R and outer radius 2 R made of a material of thermal conductivity K_{2}. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is
A. $K_{1}+K_{2}$
B. $\frac{K_{1}+3 K_{2}}{4}$
C. $\frac{K_{1} \cdot K_{2}}{K_{1}+K_{2}}$
D. $\frac{3 K_{1}+K_{2}}{4}$

Answer:

- Watch Video Solution

20. The counting rate observed from a radioactive source at $t=0$ second was 1600 counts per second and at $t=8$ seconds it was

100 counts per second. The counting rate observed, as counts per second at $t=6$ seconds, willbe
A. 400
B. 300
C. 200
D. 150

Answer:

D Watch Video Solution
21. A ballon starting from the ground has been ascending vertically at a uniform veloctiy for 4.5 sec and a stone let fall from it reaches the ground in 7 sec . Find the velocity of the ballon and its heigth when the stone was let fall.
A. $20.88 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $22 \mathrm{~m} / \mathrm{s}$
D. $24 \mathrm{~m} / \mathrm{s}$

Watch Video Solution

22. Three bars of equal lengths x and equal area of cross-section A are connected in series.

Their thermal conductivities are in the ratio

2:4:3. If the open ends of the first and the last bars are at temperatures $200^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$, respectively in the steady state, calculate the temperatures of both the junctions.
A. $116^{\circ} \mathrm{C}, 74^{\circ} \mathrm{C}$
B. $120^{\circ} \mathrm{C}, 180^{\circ} \mathrm{C}$
C. $125^{\circ} C, 50^{\circ} C$
D. $130^{\circ} C, 40^{\circ} C$

Answer:

- Watch Video Solution

23. The electric potential between a proton and as electron is given by $V=V_{0} \frac{\ln (r)}{r_{0}}$, wherer ${ }_{0}$ is a constant. Assuming Bohr's model to be applicable, write variation of r_{n} with n, n being the principal quantum number ?
A. $r_{n} \propto n$
B. $r_{n} \propto 1 / n$
C. $r_{n} \propto n^{2}$
D. $r_{n} \propto 1 / n^{2}$

Answer:

D Watch Video Solution

24. A nonconducting ring (of mass m, radius r, having charge Q) is placed on a rough horizontal surface (in a cylindrical region with
transverse magnetic field). The field is increasing with time at the rate R and coefficient of friction between the surface and the ring is μ. For ring to remain in equilibrium μ should be greater than equal to, *
A. $\frac{Q r^{2} R^{2}}{2 m g}$
B. $\frac{Q r R}{2 m g}$
C. $\frac{Q r^{2} R}{2 m g}$
D. $\frac{Q r R^{2}}{2 m g}$

Answer:

D Watch Video Solution

25. A bullet is fired vertically upwards with a velocity v from the surface of a spherical planet when it reaches its maximum height, its acceleration due to the planet's gravity is $\frac{1}{4} t h$ of its value at the surface of the planet. If the
escape velocity from the planet is
$V_{\text {escape }}=v \sqrt{N}$, then the value of N is :
(ignore energy loss due to atmosphere).
A. 44228
B. 2
C. 3
D. 44256

Answer:

D Watch Video Solution
26. An electric heater is used in a room of total
wall area $137 m^{2}$ to maintain a temperature of
$+20^{\circ} C$ inside it when the outside
temperature is $-10^{\circ} C$. The walls have three
different layers materials. The innermost layer
is of wood of thickness 2.5 cm , in the middle
layer is od cement of thickness 1.0 cm and the outermost layer is of brick of thickness 25.0
cm . find the power of the electric heater.

Assume that there is no heat loss through the
floor and the ceiling. The thermal conductives
of wood, cement and brick are $0.125,1.5$ and $1.0 w a / \mathrm{m} / .^{\circ} \mathrm{C}$ respectively.
A. 900 W
B. 9000 W
C. 90 W
D. 1900 W

Answer:

D Watch Video Solution

