©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 6

Exercise

1. Let $P(r)=\frac{Q}{\pi R^{4}} r$ be the charge density distribution for a solid sphere of radius R and
total charge Q . For a point ' p ' inside the
sphere at distance r_{1} from the centre of the sphere, the magnitude of electric field is:
A. $\frac{Q}{4 \pi \varepsilon_{0} r_{1}^{2}}$
B. $\frac{Q r_{1}^{2}}{4 \pi \varepsilon_{0} R^{4}}$
C. $\frac{Q r_{1}^{2}}{3 \pi \varepsilon_{0} R^{4}}$
D. 0

Answer:

2. A student measures the thickness of a
human hair by looking at it through a microscope of magnification 100. He makes 20 observations and findsd that the average
width of the hair in the field of view of the microscope is 3.5 mm . What is his estimate on the thickness of hair?
A. 0.035 mm
B. 2 mm
C. 0.5 mm

D. 1.5 mm

Answer:

D Watch Video Solution

3. A ray of light moving in air strikes at origin at grazing angle and then follows a path $2 y=x^{2}$ for $x \geq 0$. The correct variation of refractive index with x co-ordinate is:
A. $\sqrt{1+4 x^{2}}$
B. $\sqrt{1+2 x^{2}}$
C. $\sqrt{1+x^{2}}$
D. $\sqrt{1+\frac{x^{2}}{2}}$

Answer:

D Watch Video Solution

4. The eccentricity of the earth's orbit is 0.0167
, the ratio of its maximum speed in its orbit to
its minimum speed is
A. 2507
B. 1033
C. 8324
D. 9000

Answer:

D Watch Video Solution

5. Two vessels A and B of different shapes
have the same base area and are filled with
water up to the same height h (see figure).

The force exerted by water on the base is F_{A} for vessel A and F_{B} for vessel B. The respective weights of the water filled in vessels are W_{A} and W_{B}. Then

A. $F_{A}>F_{B}, W_{A}>W_{B}$
B. $F_{A}=F_{B}, W_{A}>W_{B}$
C. $F_{A}=F_{B}, W_{A}<W_{B}$

$$
\text { D. } F_{A}>F_{B}, W_{A}=W_{B}
$$

Answer:

- Watch Video Solution

6. When the diffraction pattern from a certain
slit illuminated with laser light $\left(\lambda=6330 A^{\circ}\right)$
is projected on a screen 150 cm from the slit,
the second minima on each side are separated
by 8 cm . This tells us that:
A. the slit is approximately 0.005 cm wide
B. the slit is approximately 0.05 cm wide
C. a / λ is approximately 7.5 (a is the slit width)
D. a / λ is approximately 750

Answer:

D Watch Video Solution

7. What is the moment of inertia of a ring about a tangent to the periphery of the ring?
A. $\frac{1}{2} M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $M R^{2}$
D. $M R^{2} / 9$

Answer:

D Watch Video Solution

8. A particle moves with a velocity $(3 i+4 j)$ m / s from origin.The displacement of particle along line $x=y$ after two seconds will be:
A. 10 m
B. $\frac{7}{\sqrt{2}}$
C. $7 \sqrt{2} m$
D. None of these

Answer:

- Watch Video Solution

9. Hydrogen (H), deuterium (D), singly ionized helium $\left(\mathrm{He}^{+}\right)$and doubly ionized
lithium ($L i$) all have one electron around the
nucleus. Consider $n=2$ to $n=1$ transition.

The wavelength of emitted radiations are
$\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} respectively. then approximately

$$
\begin{aligned}
& \text { A. } \lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4} \\
& \text { B. } 4 \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4} \\
& \text { C. } \lambda_{1}=2 \lambda_{2}=2 \sqrt{2} \lambda_{3}=3 \sqrt{2} \lambda_{4} \\
& \text { D. } \lambda_{1}=\lambda_{2}=2 \lambda_{3}=3 \sqrt{2} \lambda_{4}
\end{aligned}
$$

Answer:

10. The moment of inertia of a uniform thin rod of length L and mass M about an axis passing through a point at a distance of $\frac{L}{3}$ from one of its ends and perpendicular to the rod is
A. $\frac{M L^{2}}{12}$
B. $\frac{M L^{2}}{9}$
C. $\frac{7 M L^{2}}{48}$
D. $\frac{M L^{2}}{48}$

Answer:

D Watch Video Solution

11. A charge q is uniformly distributed on a non-conducting disc of radius R. It is rotated with an angular speed ω about an axis passing through the centre of mass of the disc and perpendicular to its plane. Find the magnetic moment of the disc.
A. $\frac{\mu_{0} Q \omega}{2 \pi R}$
B. $\frac{\mu_{0} Q \omega}{\pi R}$
C. $\frac{\mu_{0} Q \omega}{4 \pi R}$
D. $\frac{2 \mu_{0} Q \omega}{\pi R}$

Answer:

- Watch Video Solution

12. Refer to the common emitter amplifier circuit shown below, using a transistor with
$\beta=80$ and $V_{B E}=0.7$ volt. The value of
resistance R_{B} is

А. 330Ω
B. $330 k \Omega$
C. 220Ω
D. $220 k \Omega$

Answer:

D Watch Video Solution
13. If the length of a tube is less and cannot accommodate the maximum rise of liquid, then:
A. liquid will form fountain
B. liquid will not rise
C. the meniscus will adjust itself so that
the water does not spill
D. None of these

- Watch Video Solution

14. A square wire loop with 2 m sides in perpendicular to a uniform magnetic field, with half the area of the loop in the field. The loop contains a 20 V battery with negligible internal resistance. If the magnitude of the field varies with time according to $B=0.042-0.87 \mathrm{t}$, with B in tesla \& t in sec. What is the total emf in the circuit ?
A. 20.0 V
B. 18.26 V
C. 21.74 V
D. None of these

Answer:

D Watch Video Solution

15. A car accelerates from rest at a constant
rate α for some time, after which it decelerates at a constant rate β, to come to rest. If the total time elapsed is t seconds.

Then evalute (a) the maximum velocity
reached and (b) the total distance travelled.
A. $\frac{\alpha+\beta t^{2}}{(\alpha+\beta)}$
B. $\frac{\alpha \beta t^{2}}{2(\alpha+\beta)}$
C. $\frac{\alpha^{2} t}{(\alpha+\beta)}$
D. $\frac{\beta^{2} t^{2}}{2(\alpha+\beta)}$

Answer:

D Watch Video Solution

16. Suppose Earth's orbital motion around the

Sun is suddenly stopped. What time will the Earth take to fall into the Sun?
A. 2 months
B. 2 years
C. 2 days
D. 20 days

Answer:

D Watch Video Solution
17. Four balls each of radius 10 cm and mass 1 $\mathrm{kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are attached to the periphery of massless plate of radius 1 m . What is moment of inertia of the system about the centre of plate?

A. $8.08 \mathrm{~kg} / \mathrm{m}^{2}$

B. $7.02 \mathrm{~kg} / \mathrm{m}^{2}$

C. $10.04 \mathrm{~kg} / \mathrm{m}^{2}$
D. $9.02 \mathrm{~kg} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution

18. A particle of mass m moving with kinetic energy K, makes a head - on elastic collision with a stationary particle of mass ηm. The
maximum potential energy stored in the system during the collision is
A. k/n
B. $\frac{(n-1) k}{n}$
C. $\frac{(n+1) k}{n}$
D. $\frac{n k}{(n+1)}$

Answer:

D Watch Video Solution

19. One mole of an ideal monatomic gas has
initial temperature T_{0}, is made to go through
the cycle abca shown in the given figure.If U denotes the internal energy, then choose the correct alternative.

A. $U_{c}>U_{b}>U_{a}$
B. $U_{c}-U_{b}=5 R T_{0}$
C. $U_{c}-U_{a}=\frac{9 R T_{0}}{4}$
D. $U_{b}-U_{a}=\frac{3 R T_{0}}{4}$

Answer:

D Watch Video Solution

20. Let V and I be the readings of the
voltmeter and the ammeter respectively as
shown in the figure. Let R_{V} and R_{A} be
their corresponding resistancce Therefore,

$$
\text { A. } R=\frac{V}{I}
$$

B. $R=\frac{V}{I-\left(\frac{V}{R_{V}}\right)}$
C. $R=R_{V}-R_{A}$
D. $R=\frac{V\left(R+R_{A}\right)}{I R_{A}}$

Answer:

21. A freshely prepared radioactive source of half 2 hours emits radiations of intensity which is 64 times the permissible safe level.

The minimum time after which it would be possible to work safely with this source is a) 6 hours b) 12 hours c) 24 hours d) 128 hours
A. 6 hours
B. 12 hours
C. 24 hours

D. 128 hours

Answer:

D Watch Video Solution

22. A large cylindrical rod of length L is made by joining two identical rods of copper and steel of length $\left(\frac{L}{2}\right)$ each. The rods are completely insulated from the surroundings. If
the free end of copper rod is maintained at $100^{\circ} C$ and that of steel at $0^{\circ} C$ then the
temperature of junction is (Thermal

conductivity of copper is 9 times that of steel)

A. $90^{\circ} C$
B. $50^{\circ} \mathrm{C}$
C. $10^{\circ} \mathrm{C}$
D. $67^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

