©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 7

Exercise

1. An ice cube floats on water in a beaker with

9/10 th of its volume submerged under water.
What fraction of its volume will be submerged,
if the beaker of water is taken to the Moon
where the gravity is $1 / 6$ th that on the Earth?

$$
\begin{aligned}
& \text { A. } \frac{9}{10} \\
& \text { B. } \frac{27}{50} \\
& \text { C. } \frac{2}{3} \\
& \text { D. Zero }
\end{aligned}
$$

Answer:

D Watch Video Solution
2. N divisions on the main scale of a vernier calliper coincide with ($N+1$) divisions of the vernier scale.If each division ofmain scale is 'a' units, then the least count of the instrument is
A. a
B. $\frac{a}{N}$
C. $\frac{N}{N+1} \times a$
D. $\frac{a}{N+1}$

- Watch Video Solution

3. A cubical block of steel of each side equal to

1 is floating on mercury in vessel. The densities
of steel and mercury are ρ_{s} and ρ_{m}. The height of the block above the mercury level is given by
A. $\ell\left(1+\frac{\rho_{s}}{\rho_{m}}\right)$
B. $\ell\left(1-\frac{\rho_{s}}{\rho_{m}}\right)$
C. $\ell\left(1+\frac{\rho_{m}}{\rho_{s}}\right)$
D. $\ell\left(1-\frac{\rho_{m}}{\rho_{s}}\right)$

Answer:

D Watch Video Solution

4. A spherically symmetric gravitational system
of particles has a mass density
$\rho=\left\{\begin{array}{lllll}\rho_{0} & f \text { or } & r & < & R \\ 0 & f & \text { or } & r & >\end{array} \quad R \quad\right.$ where ρ_{0} is a
constant. A test mass can undergo circular
motion under the influence of the gravitational field of particles. Its speed vas a
function of distahce $r(0<r<O O)$ form the centre of the system is represented by
A.
(a)

B.
(b)

C.
(c)

D.
(d)

Answer:

- Watch Video Solution

5. In a thermally isolated system, two boxes
filled with an ideal gas are connected by a valve. When the valve is in closed position, states of the box 1 and 2 , respectively, are (1
atm, V, T) and ($0.5 \mathrm{~atm}, 4 \mathrm{~V}, \mathrm{~T}$). When the valve is opened, the final pressure of the system is approximately
A. 0.5 atm
B. 0.6atm
C. 0.45 atm
D. 1.0atm

Answer:

D Watch Video Solution
6. A clock which keeps correct time at $20^{\circ} \mathrm{C}$ is
subjected to $40^{\circ} C$. If coefficient of linear expansion of the pendulum is
$12 \times 10^{-6} /{ }^{\circ} C$. How much will it gain or loss in time ?
A. 10.3 s/day
B. 20.6s/day
C. 5 s/day
D. 20min./day

Watch Video Solution

7. A small asteroid is orbiting around the sun in a circular orbit of radius r_{0} with speed V_{0}. A rocket is launched from the asteroid with speed $V=\alpha V_{0}$, where V is the speed relative to the sun. The highest value of α for which the rocket will remain bound to the solar system is (ignoring gravity due to the asteroid and effects of other planets) -
B. 2
C. $\sqrt{3}$
D. 1

Answer:

D Watch Video Solution

8. An energy of 24.6 eV is required to remove one of that electrons from a neutal helium atom. The enegy (in $e V$)required to remove

both the electrons from a netural helium atom

is
A. 79.0
B. 51.8
C. 49.2
D. 38.2

Answer:
(Watch Video Solution
9. In a cylinder region of radius R, a uniform magnetic field is there which is increasing with
time, according as $B=B_{0} t^{2}$. A positive point charge q is released from rest at
$P\left(O P=\frac{R}{2}\right)$ at $t=0$ [the instant the field is switched on]

The force experienced by, the point charge at
$t=1 s$, is $(R=2 m)$
A. $q B_{0}$,anti-clockwise
B. $q B_{0}$, clockwise
C. $2 q B_{0}$,anti-clockwise
D. $2 q B_{0}$,clockwise

Answer:

D Watch Video Solution

10. A particle of charge $-q$ and mass m moves
in a circular orbits of radius r about a fixed charge $+Q$. The relation between the radius of the orbit r and the time period T is

$$
\begin{aligned}
& \text { A. } r=\frac{Q q}{16 \pi^{2} \in_{0} m} T^{2} \\
& \text { B. } r^{3}=\frac{Q q}{16 \pi^{3} \in_{0} m} T^{2} \\
& \text { C. } r^{2}=\frac{Q q}{16 \pi^{3} \in_{0} m} T^{3} \\
& \text { D. } r^{2}=\frac{Q q}{4 \pi^{3} \in_{0} m} T^{3}
\end{aligned}
$$

Answer:

11. Moment of inertia of a uniform-disc of mass
m about an axis $x=a$ is $m k^{2}$, where k is the
radius of gyration. What is its moment of inertia about an axis $x=a+b$:

> A. $m k^{2}+m(a+b)^{2}-m a^{2}$
> B. $m k^{2}+m \frac{(a+b)^{2}}{2}$
> C. $m k^{2}+m \frac{b^{2}}{2}$
> D. $m k^{2}+m b^{2}$

Answer:

- Watch Video Solution

12. A uniform rope of linear mass density λ and length l is coiled on a smooth horizontal
surface. One end is pulled up with constant velocity v . Then the average power applied by
the external agent in pulling the entire rope
just off the ground is :-

A. $\frac{1}{2} \lambda \ell v^{2}+\frac{\lambda \ell^{2} g}{2}$
B. $l \ell g v$
C. $\frac{1}{2} \lambda v^{3}+\frac{\lambda \ell v g}{2}$
D. $\lambda \ell v g+\frac{1}{2} \lambda v^{3}$

Answer:

- Watch Video Solution

13. Water flows steadily through a horizontal
pipe of a variable cross-section. If the pressure of water is p at a point where the velocity of
flow is v, what is the pressure at another point
where the velocity of flow is $2 \mathrm{v}, \rho$ being the density of water?

$$
\begin{aligned}
& \text { A. } \rho-\frac{3}{2} \rho v^{2} \\
& \text { B. } \rho+\frac{3}{2} \rho v^{2} \\
& \text { C. } \rho-2 \rho v^{2} \\
& \text { D. } \rho+2 \rho v^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution
14. A horizontal circular platform of radius 0.5 m and mass axis. Two massless spring toyguns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance
0.25 m from the centre on its either sides
along its diameter (see figure). Each gun
simultaneously fires the balls horizontally and
perpendicular to the diameter in opposite directions. After leaving the platform, the balls
have horizontal speed of $9 m s^{-1}$ with respect
to the ground. The rotational speed of the
platform in rads ${ }^{-1}$ after the balls leace the
platform is

A. 2
B. 3
C. 5
D. 4

Answer:

- Watch Video Solution

15. An ideal gas is expanding such that $P T^{2}=$ constant. The coefficient of volume expansion of lthe gas is:
A. $\frac{1}{T}$
B. $\frac{2}{T}$
C. $\frac{3}{T}$
D. $\frac{4}{T}$

- Watch Video Solution

16. A wall is made of equally thick layers A and

B of different matierals. Thermal conduvtivity
of A is twice that of B. In the stedy state, the temperature difference across the wall is
$36^{\circ} \mathrm{C}$. The temperature difference across the
layer A is
A. $6^{\circ} \mathrm{C}$
B. $12^{\circ} \mathrm{C}$
C. $18^{\circ} \mathrm{C}$

D. $24^{\circ} C$

Answer:

D Watch Video Solution

17. A particle performs SHM in a straight line.

In the first second, starting from rest, it travels
a distance a and in the next second it travels a distance b in the same direction. The amplitude of the SHM is
A. $a-b$
B. $\frac{(2 a-b)}{3}$
C. $\frac{2 a^{2}}{(3 a-b)}$
D. None of these

Answer:

D Watch Video Solution

18. Light of wavelength $\lambda_{p h}$ falls on a cathode
plate inside a vacuum tube as shown in the figure . The work function of the cathode
surface is ϕ and the anode is a wire mesh of
conducting material kept at distance d from
the cathode. A potential different V is maintained between the electrodes. If the minimum de Broglie wavelength of the electrons passing through the anode is λ_{e} which of the following statement (s) is (are)

true?

A. λ_{e} decreases with increase in ϕ and $\lambda_{p h}$
B. λ_{e} is approximately halved, if d is doubled
C. For large potential difference
$(V \gg \phi / e), \lambda_{e}$ is approximately
halved if V is made four times
D. λ_{e} increases at the same rate as $\lambda_{p h}$ for

$$
\lambda_{p h}<h c / \phi
$$

Answer:

19. In figure, there is a four way key at the middle.If key is shown from situation BD to

AD,then how much charge will flow through point O ?

A. $24 \mu C$
B. $36 \mu C$
C. $72 \mu C$
D. $12 \mu C$

Answer:

D Watch Video Solution

20. A solid square plate is spun around different axes with the same angular speed. In which of the following choice of axis of rotation will the kinetic energy of the plate be the largest?
A. Through the centre, normal to the plate
B. Along one of the diagonals of the plate
C. Along one of the edges of the plate
D. Through one corner normal to the plate

Answer:

D Watch Video Solution

21. Water stands at a depth H in a tank whose side walls are vertical. A hole is made in one of
the walls at a height h below the water
surface. The stream of water emerging from
the hole strikes the floor at a distance R from
the tank, where R is given by

$$
\begin{aligned}
& \text { A. } R=\sqrt{h(H-h)} \\
& \text { B. } R=\sqrt{h(H+h)} \\
& \text { C. } R=2 \sqrt{h(H-h)} \\
& \text { D. } R=2 \sqrt{h(H+h)}
\end{aligned}
$$

Answer:

D Watch Video Solution

