©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 8

Exercise

1. Six point charges (each of magnitude Q) are
placed on the six vertices of a cube of side x
such that two adjacent vertices are vacant.

Electrostatic field intensity at the centre of the
cube is $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$
A. $\frac{4 \sqrt{2}}{\sqrt{3}} \frac{k Q}{x^{2}}$
B. $\frac{8 \sqrt{2}}{5 \sqrt{3}} \frac{k Q}{x^{2}}$
C. $\frac{8 \sqrt{2}}{3 \sqrt{3}} \frac{k Q}{x^{2}}$
D. $\frac{4 \sqrt{2}}{5 \sqrt{3}} \frac{k Q}{x^{2}}$

Answer:
2. A soap bubble of radius ' r ' is blown up to
form a bubble of radius $2 r$ under isothemal conditions. If σ be the surface tension of soap solution, the energy spent in doing so is
A. $3 \pi \sigma r^{2}$
B. $6 \pi \sigma r^{2}$
C. $12 \pi \sigma r^{2}$
D. $24 \pi \sigma r^{2}$

Answer:
3. A ray of light is incident on a surface of glass slab at an angle 45°. If the lateral shift produced per unit thickness is $1 / \sqrt{3}$, the angle of refraction produced is
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\tan ^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$
C. $\sin ^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$
D. $\tan ^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$

Answer:

D Watch Video Solution

4. A charge Q is uniformly distributed over a long rod $A B$ of length L as shown in the figure.

The electric potential at the point O lying at distance L from the end A is

A.
Q
$\frac{Q}{8 \pi \varepsilon_{0} L}$
B. $\frac{3 Q}{4 \pi \varepsilon_{0} L}$
c. $\frac{Q}{4 \pi \varepsilon_{0} L \ln 2}$
D. $\frac{Q \ln 2}{4 \pi \varepsilon_{0} L}$

Answer:

- Watch Video Solution

5. The graph of an object's motion (along the x-axis) is shown in the figure.The instantaneous velocity of the object at points

A and B are v_{A} and v_{B} respectively. Then

A. $v_{A}=v_{B}=0.5 \mathrm{~m} / \mathrm{s}$
B. $v_{A}=0.5 m / s<v_{B}$
C. $v_{A}=0.5 m / s>v_{B}$
D. $v_{A}=v_{B}=2 m / s$

Answer:

- Watch Video Solution

6. In an ideal YDSE when a glass plate ($\mu=1.5$) of
thickness t is introduced in the path of one of
the interfering beams the intensity at the position where the central maximum occured previously remains unchanged. The maximum thickness of the glass plate is:
A. λ
B. $\lambda / 3$
C. $\frac{2 \lambda}{3}$
D. 2λ

Answer:

D Watch Video Solution

7. Potential of certain points in circuit are

 maintained as marked. What is reading ofvoltmeter (If ammeter reads zero)?

A. 10 V
B. 2.5 V
C. 5V
D. 20 V

Answer:

Watch Video Solution

8. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelngth of the second line of the series should be
A. $13122 \stackrel{\circ}{A}$
B. $3280{ }^{\circ} A$
C. $4860 \AA$
D. $2187 \AA$

Answer:

D Watch Video Solution

9. A bulb made of tungsten filament of surfece
area $0.5 \mathrm{~cm}^{2}$ is heated to a temperature

3000K when operated at 220V.The emissivity
of the filament is $\in=0.35$ and take
$\sigma=5.7 \times 10^{-8} \mathrm{mks}$ units. Then the power of
the bulb is,
A. 8.8 W

B. 80.8 W

C. 0.88 W
D. 800 W

Answer:

D Watch Video Solution

10. A spherical small ball of density ρ is gently released in a liquid of density $\sigma(\rho>\sigma)$.The initial acceleration of the free fell of the ball will be
A. $\left(\frac{\rho+\sigma}{\rho}\right) \cdot g$
B. $\left(\frac{\rho-\sigma}{\sigma}\right) \cdot g$
C. $\left(\frac{\rho-\sigma}{\rho}\right) \cdot g$
D. g

Answer:

D Watch Video Solution

11. The rear side of a truck is open and a box of

40 kg mass is placed 5 m from the opened as
shown The coefficient of friction between the
box and the surface below it is 0.15 On a straight road the truck starts from rest and accelerates with $2 m s^{-2}$ At what distance from the starting point does the box fall off the truck? (Ignore the size of the box)

A. 20 m
B. 2 m
C. 50m
D. 5 m

Answer:

- Watch Video Solution

12. N atoms of a radioactive element emit n
alpha particles per second. The half-life of tge element is.
A. $\frac{n}{N} \mathrm{sec}$
B. $\frac{N}{n} \mathrm{sec}$
C. $\frac{0.693 N}{n} \mathrm{sec}$
D. $\frac{0.693}{N} \mathrm{sec}$

Answer:

- Watch Video Solution

13.

A horizontal rod of mass m and length L is pivoted at one end The rod's other end is supported by a spring of force constant k. The rod is displaced by a small angle θ from its
horizontal equilibrium position and released.

The angular frequency of the subsequent simple harmonic motion is

$$
\text { A. } \sqrt{\frac{3 k}{m}}
$$

B. $\operatorname{srqt}\left(\frac{k}{3 m}\right)$
C. $\sqrt{\frac{3 k}{m}+\frac{3 g}{2 L}}$
D. $\sqrt{\frac{k}{m}}$

Answer:

D Watch Video Solution
14. Two simple pendulum of length $1 m$ and $16 m$ respectively are both given small displacement in the same direction at the same instant. They will be again in phase after the shorter pendulum has completed n oscillations. The value of n is
A. $\frac{1}{4}$ th oscillation
B. 4 oscillations
C. 5 oscillations
D. 16 oscillations

Answer:

D Watch Video Solution

15. Water is filled up to a height h in a beaker of radiys R as shown in the figure. The density of water is ρ, the surface tension of water is T and the atmospheric pressure is P_{0}. Consider a vertical section $A B C D$ of the water column through a diameter of the beaker. The force on water on one side on this section by water on
the other side of this section has magnitude

A. $\left|2 P_{0} R h+\pi R^{2} \rho g h-2 R T\right|$
B. $\left|2 P_{0} R h+R \rho g h^{2}-2 R T\right|$
C. $\left|P_{0} \pi R^{2}+R \rho g h^{2}-2 R T\right|$

$$
\text { D. }\left|P_{0} \pi R^{2}+R \rho g h^{2}+2 R T\right|
$$

Answer:

D Watch Video Solution

16. A police van moving on a highway with a speed of $30 \mathrm{kmh}^{-1}$ fires a bullet at a thiefs car
speeding away in the same direction with a speed of $192 \mathrm{kmh}^{-1}$. If the muzzle speed of the bullet is $150 \mathrm{~ms}^{-1}$ with what speed does the bullet hit the thiefs car ? (Note: Obtain
that speed which is relevant for damaging the thief s car).
A. $10 \mathrm{~m} / \mathrm{sec}$
B. $115 \mathrm{~m} / \mathrm{sec}$
C. $105 \mathrm{~m} / \mathrm{sec}$
D. $15 \mathrm{~m} / \mathrm{sec}$

Answer:
(Watch Video Solution
17. A dog with mass M has its string attached
to one end of a spring which runs without
friction along a horizontal overhead rod. The other end of the springs is fixed to a wall The spring constant is K. The string is massless
and inextensible and it maintains a constant
angle θ with the overhead rod, even when the
dog moves. There is friction with coefficient
mu between the dog and the gound What is
the maximum distance (in cm) that the dog
moving slowly can stretch the spring beyond
its natural length? Use $M=30 \mathrm{~kg}$,
$K=400 N / m$ and $\mu=\frac{1}{3}$

A. 0.2 m
B. 2 m

C. 0.02 m

D. 0.3 m

Answer:

- Watch Video Solution

18. Two identical ladders, each of mass M and
length L are resting on the rough horizontal
surface as shown in the figure. A block of mass
m hangs from P. If the system is in equilibrium,
find the magnitude and the direction of
frictional force at A and B .

A. $\left[(M+m) \frac{g}{2}\right] \cot \theta$
B. $\left[(M-m) \frac{g}{2}\right] \cot \theta$
C. $\left[(M-m) \frac{g}{2}\right] \tan \theta$
D. $\left[(M+m) \frac{g}{2}\right] \tan \theta$

Answer:

- Watch Video Solution

19. Currents flowing in each of the circuits A
and B respectively are

(Circuit A)

(Circuit B)
A. $1 \mathrm{~A}, 2 \mathrm{~A}$
B. $2 \mathrm{~A}, 1 \mathrm{~A}$

C. $4 \mathrm{~A}, 2 \mathrm{~A}$

D. $2 \mathrm{~A}, 4 \mathrm{~A}$

Answer:

D Watch Video Solution

20. The densitis of two solid spheres A and B of the same radii R very with radial distance
$\operatorname{rasp}_{A}(r)=k\left(\frac{r}{R}\right)$ and $p_{B}(r)=k\left(\frac{r}{(R)^{5}}\right.$,
respectively, where k is a constant . The moments of inertia of the inividual spheres
about axes passing throgh their centres are
I_{A} and I_{B} respectively. if $\frac{I_{B}}{I_{A}}=\frac{n}{10}$, the value of n is
A. 2
B. 5
C. 3
D. 6

Answer:

D Watch Video Solution
21. In the adjacent diagram, CP represents a wavefront and $A O \& B P$, the corresponding two rays. Find the condition on θ for constructive interference at P between the ray BP and reflected ray OP.

A. $\cos \theta=3 \lambda / 2 d$
B. $\cos \theta=\lambda / 4 d$
C. $\sec \theta-\cos \theta=\lambda / d$

$$
\text { D. } \sec \theta-\cos \theta=4 \lambda / d
$$

Answer:

D Watch Video Solution

22. Two solid cylinders P and Q of same mass
and same radius start rolling down a fixed inclined plane from the same height at the same time. Cylinder P has most of its mass concentrated near its surface, while Q has
most its mass concentrated near the axis. Which statement(s) is (are) correct?
A. Both cylinders P and Q reach the ground at the sametime.
B. Cylinders P haslarger linear acceleration
than cylinder Q.
C. Both cylinders reach the ground with same translationalkinetic energy.
D. Cylinder Q reachestheground with larger angular speed.

Answer:

- Watch Video Solution

