©゙’doubtnut

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 9

Exercise

1. A slab of glass, of thickness 6 cm and refractive index $\mu=1.5$ is placed in front of a concave mirror as shown in the figure. If the
radius of curvature of the mirror is 40 cm and
the reflected image coincides with the object, then the distance of the object from the mirror is
A. 30 cm
B. 22 cm
C. 40 cm
D. 28 cm

Answer:
2. The dimensions of angular momentum, latent heat and capacitance are, respectively.
A. $\left[M L^{2} T^{1} A^{2}\right],\left[L^{2} T^{-2}\right],\left[M^{-1} L^{-2} T^{2}\right]$
B. $\left[M L^{2} T^{-2}\right],\left[L^{2} T^{2}\right],\left[M^{-1} L^{-2} T^{4} A^{2}\right]$
C. $\left[M L^{2} T^{-1}\right],\left[L^{2} T^{-2}\right],\left[M L^{2} T A^{2}\right]$
D.

$$
\left[M L^{2} T^{-1}\right],\left[L^{2} T^{-2}\right],\left[M^{-1} L^{-2} T^{4} A^{2}\right]
$$

3. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. $1 /(10 \lambda)$
B. $1 /(11 \lambda)$
C. $11 /(10 \lambda)$

D. $1 /(9 \lambda)$

Answer:

D Watch Video Solution

4. A fresh dry cell of 1.5 volt and two resistors
of $10 k \Omega$ each are connected in series. An analog voltmeter measures a voltage of 0.5
volt across each of the resistor. A $100 \mu F$
capacitor is fully charged using the same
source. The same voltmeter is now used to
measure the voltage across It. The initial value of the current and the time in which the voltmeter reading falls to 0.5 volt are respectively.
A. $60 \mu \mathrm{~A}, 11 \mathrm{~s}$
B. $120 \mu \mathrm{~A}, 15 \mathrm{~s}$
C. $150 \mu \mathrm{~A}, 15 \mathrm{~s}$
D. $150 \mu \mathrm{~A}, 11 \mathrm{~s}$

Answer:

5. A meter bridge is set up as shown, to determine an unknown resistance X using a standard 10 ohm resistor. The galvanometer shows null point when tapping -key is at 52 cm mark. The end-corrections are 1 cm and 2 cm respectively for the ends A and B. The determine value of X is

A. 10.2 ohm
B. 10.60 hm
C. 10.8 ohm
D. 11.1 ohm

Answer:

D Watch Video Solution

6. The currect voltage relation of diode is given by $1=\left(e^{1000 V / T}-1\right) m A$, where the applied voltage V is in volt and the
temperature T is in degree Kelvin. If a student makes an error measuring $\pm 0.01 V$ while measuring the current of $5 m A$ at 300 K , what will be error in the value of current in mA?
A. 0.05 mA
B. 0.2 mA
C. 0.02 mA
D. 0.5 mA

Answer:

7. A person climbs up a stalled escalator in 60 s.

If standing on the same but escalator running
with constant velocity, he takes 40 s . How
much time is taken by the person to walk up
the moving escalator?
A. 37 s
B. 27 s
C. 24 s
D. 45 s

Answer:

- Watch Video Solution

8. A star shaped loop (with $l=$ length of
each section) carries current i. Magnetic field
at the centroid of the loop is

A. $\frac{3 \mu_{0} i}{\pi \ell}$
B. $\frac{3 \mu_{0} i}{2 \pi \ell}$
C. $\frac{\pi m v_{0}}{q B_{0}}$
D. $\frac{\pi m v_{0} \sqrt{3}}{q B}$

Answer:

D Watch Video Solution

9. Equal masses of two substance of densities
ρ_{1} and ρ_{2} are mixed together. What is the density of the mixture?
A. $\frac{1}{2}\left(\rho_{1}+\rho_{2}\right)$
B. $\left(\rho_{1}+\rho_{2}\right)$
C. $\sqrt{\rho_{1} \cdot \rho_{2}}$

$$
\text { D. } \frac{\rho_{1} \cdot \rho_{2}}{\left(\rho_{1}+\rho_{2}\right)}
$$

Answer:

D Watch Video Solution

10. Two identical photocathodes receive light of frequencies f_{1} and f_{2}. If the velocities of the photo electrons (of mass m) coming out are respectively v_{1} and v_{2} then

$$
\begin{aligned}
& \text { A. } v_{1}-v_{2}=\left[\frac{2 h}{m}\left(f_{1}-f_{2}\right)\right]^{1 / 2} \\
& \text { B. } v_{1}^{2}-v_{2}^{2}=\frac{2 h}{m}\left(f_{1}-f_{2}\right) \\
& \text { C. } v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}+f_{2}\right)\right]^{1 / 2} \\
& \text { D. } v_{1}^{2}+v_{2}^{2}=\frac{2 h}{m}\left(f_{1}+f_{2}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

11. A racing car travelling along a track at a constant speed of $40 \mathrm{~m} / \mathrm{s}$. A television
cameraman is recording the event from a distance 40m directly away from the track as shown in figure.In order to keep the car under view, with what angular velocity the camera should be rotated?

A. $5 / 2 \mathrm{rad} / \mathrm{s}$
B. $2 \mathrm{rad} / \mathrm{s}$
C. $3 / 2 \mathrm{rad} / \mathrm{s}$
D. $1 / 2 \mathrm{rad} / \mathrm{s}$

Answer:

- Watch Video Solution

12. Two narrow bores of diameters 3.0 mm and
6.0 mm are joined together to form a U shaped tube open at both ends. If th U-tube contains water, what is the difference in its levels in the two limbs of the tube? Surface
tension of water at the temperature of the experiment is $7.3 \times 10^{-2} \mathrm{Nm}^{-1}$. Take the angle of contact to be zero. and density of water to be $1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
$\left(g=9.8 m s^{-2}\right)$
A. 2.4 mm
B. 5.4 mm
C. 4.9 mm
D. 6.3 mm

Answer:
13. A U-shaped wire is dipped in a soap solution, and removed. A thin soap film formed between the wire and a light slider supports a weight of $1.5 \times 10^{-2} N$ (which includes the small weigh of the slider). The length of the
slider is 30 cm . What is the surface tension of the film?

$$
\text { A. } 2.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}
$$

$$
\text { B. } 5 \times 10^{-3} \mathrm{~N} / \mathrm{m}
$$

C. $6 \times 10^{-4} \mathrm{~N} / \mathrm{m}$
D. $9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$

Answer:

D Watch Video Solution

14. Two masses m and $2 m$ are placed in fixed
horizontal circular smooth hollow tube of
radius r as shown. The mass m is moving with
speed u and the mass $2 m$ is stationary. After
their first collision, the time elapsed for next
collision. (coefficient of restituation $e=1 / 2$)

A. $\frac{2 \pi r}{u}$
B. $\frac{4 \pi r}{u}$
C. $\frac{3 \pi r}{u}$
D. $\frac{12 \pi r}{u}$

Answer:

D Watch Video Solution

15. If a drop of liquid breaks into smaller droplets, it result in lowering of temperature of the droplets. Let a drop of radius R, breaks into N small droplets each of radius r. Estimate the drop in temperature.

$$
\begin{aligned}
& \text { A. } \frac{3 S}{\rho s}\left(\frac{1}{R^{2}}-\frac{1}{r^{2}}\right) \\
& \text { B. } \frac{3 S}{\rho s}\left(\frac{1}{R}-\frac{1}{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{2 S}{\rho s}\left(\frac{1}{R}-\frac{1}{r}\right)^{2} \\
& \text { D. } \frac{4 S}{\rho s}\left(\frac{1}{R^{2}}-\frac{1}{r^{2}}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

16. An ideal gas is taken through a cyclic
thermodynamic process through four steps.

The amounts of heat involved in these steps are $\quad Q_{1}=5960 J, \quad Q_{2}=-5585 J$,
$Q_{3}=-2980 J$ and $Q_{4}=3645 J$ respectively.

The corresponding quantities of work involved
are

$$
W_{1}=2200 J
$$

$$
W_{2}=-825 J
$$

$W_{3}=-1100 J$ and W_{4} respectively.
(a) Find the value of W_{4}.
(b) What are the efficiency of the cycle?
A. 765 J,10.83\%
B. $675 \mathrm{~J}, 10.83 \%$
C. 765 J,18.03\%
D. $675 J, 18.03 \%$

Answer:
17. A wooden ball of density σ is released from
the bottom of a tank which is filled with a
liquid of density $\rho(\rho>\sigma)$ up to a height h_{1}.
The ball rises in the liquid, emerges from its
surface and attains a height h_{2} in air.If viscous
effects are neglected, the ratio $\frac{h_{2}}{h_{1}}$ is
A. $\left(\frac{\rho}{\sigma}+1\right)$
B. $\left(\frac{\rho}{\sigma}-1\right)$
C. $\left(\frac{\rho}{\sigma}\right)$

$$
\text { D. }\left(\frac{\sigma}{\rho}\right)
$$

Answer:

D Watch Video Solution

18. Two identical thin ring, each of radius R meters, are coaxially placed a distance R metres apart. If Q_{1} coulomb, and Q_{2} coulomb, are repectively the charges uniformly spread on the two rings, the work done in moving a
charge q from the centre of one ring to that of the other is
A. zero

$$
\begin{aligned}
& \text { B. } \frac{q\left(Q_{1}-Q_{2}\right)(\sqrt{2}-1)}{\sqrt{2} \cdot 4 \pi \varepsilon_{0} R} \\
& \text { C. } \frac{q \sqrt{2}\left(Q_{1}+Q_{2}\right)}{4 \pi \varepsilon_{0} R} \\
& \text { D. } \frac{q\left(Q_{1}+Q_{2}\right)(\sqrt{2}+1)}{\sqrt{2} .4 \pi \varepsilon_{0} R}
\end{aligned}
$$

Answer:

D Watch Video Solution
19. Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0 cm . if the amount of glycerine collected per second at one end is $4.0 \times 10^{-3} \mathrm{kgs}^{-1}$, what is the pressuer difference between the two ends of the tube? (density of glycerine = $1.3 \times 10^{3} \mathrm{kgm}^{-3}$ and viscosity of glycerine $=$ $0.83 N_{s m^{-2}}$).
A. $7.95 \times 10^{2} \mathrm{~Pa}$
B. $9.75 \times 10^{2} \mathrm{~Pa}$
C. $5.95 \times 10^{2} \mathrm{~Pa}$
D. $9.57 \times 10^{2} \mathrm{~Pa}$

Answer:

- Watch Video Solution

