©゙’ doubtnut

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

QUESTION PAPER 2020

Part I Physics

1. A mouse jumps off from the $15^{\text {th }}$ floor of a high-rise building and lands 12 m from the building. Assume that each floor is of 3 m
height. The horizontal speed with which the mouse jumps is closest to :
A. 0
B. 5 kmph
C. 10 kmph
D. 15 kmph

Answer: D
(Watch Video Solution
2. Consider two wires of same material having
their ratio of radii to be $2: 1$. If these two wires are stretched by equal force, the ratio of stress produced in them is:

> A. $\frac{1}{4}$
> B. $\frac{1}{2}$
> C. $\frac{3}{4}$
> D. 1

Answer: A
3. A submarine has a window of area
$30 \times 30 \mathrm{~cm}^{2}$ on its ceiling and is at a depth of
100m below sea level in a sea. If the pressure inside the submarine is maintained at the sealevel atmosphere pressure, then the force acting on the window is (consider density of sea water $=1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, acceleration due to gravity $=10 \mathrm{~m} / \mathrm{s}^{2}$
A. $0.93 \times 10^{5} \mathrm{~N}$
B. $0.93 \times 10^{3} \mathrm{~N}$

C. $1.86 \times 10^{5} N$

D. $1.86 \times 10^{3} N$

Answer: A

D Watch Video Solution

4. A spacecraft which is moving with a speed u relative to the earth in the x-direction, enters the gravitational field of a much more massive planet which is moving with a speed $3 u$ in the negative x-direction. The spacecraft exits
following the trajectory as shown below.

The speed of the spacecraft with respect to
the earth a long time after it has escaped the planet's gravity is given by
A. u
B. 4 u
C. 2 u
D. 7 u

Answer: D

D Watch Video Solution

5. The earth's magnetic field was flipped by
180° a million years ago. This flip was relatively rapid and took 10^{5} years. Then the average change in orientation per year during the flip was closest to,
A. 1 second.
B. 5 seconds.
C. 10 seconds.
D. 30 seconds.

Answer: B

D Watch Video Solution
6. The platelets are drifting with the blood
flowing in a streamline flow through a
horizontal artery as shown below :

Artery is contracted in region II. Choose the correct statement.
A. As the platelets enter a constriction, the
platelets gets squeezed closer together
in the narrow region and hence the fluid pressure must rise there.
B. As the platelets enter a constriction , pressure is lower there.
C. The artery's cross section area is smaller
pressure must be larger there because pressure equals the force divided by area
D. Pressure is same in all the parts of the artery

Answer: B

D Watch Video Solution

7. Which is the following colourful patterns is due to diffraction of light?
A. Rainbow
B. White light dispersed using a prism
C. Colours observed on compact disc
D. Blue colour of sky

Answer: C

D Watch Video Solution
8. Two balls are projected with the same velocity but with different angles with the horizontal. Their ranges are equal. If the angle of projection of one is 30° and its maximum height is h, then the maximum height of other will be
A. 1 h
B. 3 h
C. 6 h
D. 10h

Answer: B

- Watch Video Solution

9. Figure below shows a shampoo bottle in a perfect cylindrical shape

In a simple experiment, the stability of the bottle filled with different amount of shampoo
volume is observed. The bottle is tilted from
one side and then released. Let the angle θ depicts the critical angular displacement resulting in the bottle losing its stability and tripping over. Choose the graph correctly depicting the fraction f of shampoo filled ($f=1$ corresponds to completely filled) vs the tripping angle θ

A.

C.

Answer: D

- Watch Video Solution

10. At a height of 10 km above the surface of earth, the value of acceleration due to gravity is the same as that of a particular depth below the surface of earth. Assuming uniform mass density of the earth, the depth is,
A. 1 km
B. 5 km
C. 10 km
D. 20 km
11. The following graph depicts the inverse of magnification versus the distance between the object and lens data for a setup. The focal length of the lens used in the setup is

A. 250 m

B. 0.004 m

C. 125 m
D. 0.002 m

Answer: B

D Watch Video Solution

12. In a circus, a performer throws an apple towards a hoop held at 45 m height by another performer standing on a high platform (see figure below). The thrower aim s
for the hoop and throws the apple with a speed of $24 \mathrm{~m} / \mathrm{s}$.

At the exact moment that the thrower released the apple, the other performer drops
the hoop.

The hoop falls straight down. At what height above the ground does the apple go through
the hoop?

A. 21 m
B. 22 m
C. 23 m
D. 24 m

Answer: B

- Watch Video Solution

13. A student was trying to construct the
circuit shown in the figure below maked (a), but ended up constructing the circuit marked
(b). Realizing her mistake, she corrected the circuit , but to her surprise, the output voltage
(across R) did not change.

The value of resistance R is :-
A. 100Ω

B. 150Ω

C. 200Ω

D. 300Ω

Answer: A

D Watch Video Solution

14. The ratio of gravitational force and electrostatic repulsive force between two electrons is approximately (gravitational constant
$=6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$, mass of an
electron $=9.1 \times 10^{-31} \mathrm{~kg}$, charge on an electron $=1.6 \times 10^{-19} C$)
A. 24×10^{-24}
B. 24×10^{-36}
C. 24×10^{-44}
D. 24×10^{-54}

Answer: C
(Watch Video Solution
15. A monochromatic beam of light enters a square enclosure with mirrored interior surface at an angle of incidence $\theta I(\neq 0)$ (see the figure below). For some value (s) of θi, the beam is reflected by every mirrored wall (other
than the one with the opening) exactly once and exits the enclosure through the same hole. which of the following statements about
this beam is correct?

A. The beam will not come out the
enclosure for any value of θi.
B. The beam will not come out for more than two values of θi.
C. The beam will not come out only at

$$
\theta i=45^{\circ}
$$

D. The beam will come out for exactly two
values of θi.

Answer: C

D Watch Video Solution

16. A charge $+q$ is situated at a distance ' d ' away from both the sides of a grounded conducting 'L' shaped sheet as shown in the
figure.

The force acting on the charge +q is
A. towards

O,
magnitude

$$
\frac{q^{2}}{32 \pi \varepsilon_{0} d^{2}}(2 \sqrt{2}+1)
$$

B. away
from
O,
magnitude
$\frac{q^{2}}{32 \pi \varepsilon_{0} d^{2}}(2 \sqrt{2}+1)$
C. towards
O,
magnitude

$$
\frac{q^{2}}{32 \pi \varepsilon_{0} d^{2}}(2 \sqrt{2}-1)
$$

D. away from O , magnitude

$$
\frac{q^{2}}{32 \pi \varepsilon_{0} d^{2}}(2 \sqrt{2}-1)
$$

Answer: C

- Watch Video Solution

17. Three balls, A, B and C, are released and all reach the point X (shonw in the figure). Balls A and B are released from two identical
structures, one kept on the ground and the other at height, h, from the ground as shown in the figure. They time t_{A} and t_{B} respectively to reach X (time starts after they leave the end of the horizontal portion of the structure). The ball C is released from a point at height, h, vertically above X and reaches X in time t_{C}.

Choose the correct statement.

A. $t_{C}<t_{A}<t_{C}$

$$
\text { B. } t_{c}=t_{A}=t_{C}
$$

C. $t_{c}=t_{A}<t_{c}$
D. $t_{B}<t_{A}=t_{C}$

Answer: B

D View Text Solution
18. Four bulbs, red, green, white and blue
(denoted by R, G, W and B respectively) are
kept in front of a converging lens (as shown in
the figure below). The observer sees that the green and blue bulbs are kept to the left of the principle axis while the red and white bulbs are kept to the right of the principle axis. He also see that the red and green bulbs are above the principle axis while the white and blue bulbs are below the principle axis.

The screens S_{1} and S_{2} are set at appropriate positions for the focusing to view the images.

Choose the figure that correctly represents
the images as seen by the observer.
B.

C. W^{0}
D.

Answer: A
19. A wide bottom cylindrical massless plastic container of height 9 cm has 40 identical coins
inside it and is floating on water with 3 cm
inside the water. If we start putting more of
such coins on its lid. It is observed that after N
coins are put, its equilibrium changes from stable to unstable. Equilibrium in floating is stable if the geometric center of the submerged portion is above the center of
mass of the object) The value of N is closed to

A. 6
B. 10
C. 16
D. 24

Answer: B

- Watch Video Solution

20. A small coin is fixed at the center of the base of an empty of cylindrical stell container having radius $\mathrm{R}=1 \mathrm{~m}$ and height $\mathrm{d}=4 \mathrm{~m}$. At time $\mathrm{t}=0 \mathrm{~s}$, the container starts gettting filled with water at a flowrate of $Q=0.1 \mathrm{~m}^{3} / \mathrm{s}$ without disturbing the coin . Find the approximate time when the coin will first be seen by teh observer "O" from the height of $\mathrm{H}=$ 5.75 m above and $\mathrm{L}=1.5 \mathrm{~m}$ radially away from
the coin as shown in the figure. Refractive
index of water in $\mathrm{n}=1.33$

A. 0 s
B. 32 s
C. 63 s
D. 150 s

Answer: C

- Watch Video Solution

21. Students A, B and C measure the length of
a room using 25 m long measuring tape of
least count (LC) 0.5 cm , meter-scale of LC 0.1 cm and a foot-scale of LC 0.05 cm , respectively.

If the specified length of the room is 9.5 m , then which of the following students will report the lowest relative error in the measured length ?
A. Student A

B. Student B

C. Student C
D. Both, student B and C

Answer: A

D Watch Video Solution

22. Meena applies the front brakes while riding
on her bicycle along a flat road. The force that
slows her bicycle is provided by the
A. front tyre
B. road
C. rear tyre
D. brakes

Answer: B

D Watch Video Solution

23. A proton and an antiproton come close to each other in vacuum such that the distance between them is 10 cm . Consider the potential
energy to be zero at infinity. The velocity at this distance will be
A. $1.17 \mathrm{~m} / \mathrm{s}$
B. $2.3 \mathrm{~m} / \mathrm{s}$
C. $3.0 \mathrm{~m} / \mathrm{s}$
D. $23 \mathrm{~m} / \mathrm{s}$

Answer: A
(Watch Video Solution
24. A point particle is acted upon by a restoring force $-k x 3$. The time period of oscillation is T when the amplitude is A . The time period for an amplitude 2 A will be :
A. T
B. $T / 2$
C. $2 T$
D. $4 T$

Answer: B
25. The output voltage (taken across the resistance) of a LCR series resonant circuit
falls to half is peak value at a frequency of 200
Hz and again reaches the same value at 800

Hz . The bandwidth of this circuit is
A. 200 Hz
B. $200 \sqrt{3} H z$
C. 400 Hz
D. 600 Hz

Answer: B

D Watch Video Solution

26. A collimated beam of charged and uncharged particles is directed towards a hole marked P on a screen as shown below. If the electric and magnetic fields as indicated below
are turned on.

A. only particles with speed E/B will go
through the hole P
B. only charged particles with speed E/B
and neutral particles will go through P
C. only neutral particles will go through P.

D. only positively charged particles with

 speed E / B and neutral particles will go through P
Answer: C

D Watch Video Solution

27. An engine runs between a reservoir at temperature 200 K and a hot body which is initially at temperature of 600 K . If the hot body cools down to a temperature of 400 K in
the process, then the maximum amount of work that the engine can do (while working in a cycle) is (the heat capacity of the hot body is $1 \mathrm{~J} / \mathrm{K}$)
A. 200(1-|n 2$)$ J
B. $200(1-\ln 3 / 2) \mathrm{J}$
C. 200(1+ $\ln 3 / 2) J$
D. 200 J

Answer: B
28. The clocktower ("ghantaghar") of Dehradun
is famous for the sound of its bell, which can
be heard, albeit faintly, upto the outskirts of
the city 8 km away. Let the intensity of this
faint sound be 30 dB . The clock is situated 80
m high. The intensity at the base of the tower
is :-
A. 60 dB .
B. 70 dB .
C. 80 dB

D. 90 dB

Answer: B

D Watch Video Solution

29. An initially uncharged capacitor C is being
charged by a battery of emf E through a
resistance R upto the instant when the capacitor is charged to the potential $E / 2$, the ratio of the work done by the battery to the heat dissipated by the resistor is given by :-
A. $2: 1$
B. $3: 1$
C. $4: 3$
D. $4: 1$

Answer: C

D Watch Video Solution

30. Consider a sphere of radius R with unform charged density and total charge Q . The electrostatic potential distribution inside the
$\phi(r)=\frac{Q}{4 \pi \varepsilon_{0} R}\left(a+b(r / R)^{c}\right)$ Note that the
zero of potential is at infinity. The values of (a,
b, c) are :-

$$
\begin{aligned}
& \text { А. }\left(\frac{1}{2},-\frac{3}{2}, 1\right) \\
& \text { В. }\left(\frac{3}{2},-\frac{1}{2}, 2\right) \\
& \text { C. }\left(\frac{1}{2}, \frac{1}{2}, 1\right) \\
& \text { D. }\left(\frac{1}{2},-\frac{1}{2}, 2\right)
\end{aligned}
$$

Answer: B
31. The efficiency of the cycle shown below in
the figure (consisting of one isobar, one adiabatic and one isotherm (is 50% the ratio
, x , between the highest and lowest temperature attained in this cycle obeys (the working substance is an ideal gas)

A. $x=e^{x-1}$
B. $x^{2}=e^{x-1}$
C. $x=e^{x^{2}-1}$
D. $x^{2}=e^{x^{2}-1}$

Answer: B

D Watch Video Solution
32. A right - angled isoceles prism is held on
the surface of a liquid composed of miscible solvents A and B of refractive index
$n_{A}=1.50$ and $n_{B}=1.30$ respectively. The refractive index of prism is $n_{p}=1.5$ and that of the liquid is given by
$N_{L}=C_{A} n_{A}+\left(1-C_{A}\right) n_{B}$ where C_{A} is the percentage of solventA in the liquid

IF θ_{C} is the critical angle at prism - liquid interface . the plot which best represents the variation of the critical angle with the percentage of solvent is

A.
B.

C.

D.

Answer: A

D Watch Video Solution
33. Instead of angular momentum quantization a student posits that energy is quantized as $E=-E_{0} / n\left(E_{0}>0\right)$ and n is a positive interger. Which of the following options is correct ?
A. The radius of the electron orbit is
$r \propto \sqrt{n}$
B. The speed of the electron is $v \propto \sqrt{n}$
C. The angular speed of the electron is
$\omega \propto 1 / n$
D. The angular momentum of the electron
is $\propto \sqrt{n}$

Answer: D

D Watch Video Solution

34. A monochromatic beam of light is incident at the interface of two materials of refractive
index n_{1} and n_{2} as shown. If $n_{1}>n_{2}$ and θ_{C}
is the critical angle then which of the following statements is NOT true ?

A. $\theta_{1}=\theta_{3}$ for all value of θ_{1}
B. $\cos \theta_{2}$ is imagimary for $\theta_{1}>\theta_{c}$
C. $\cos \theta_{2}=0$ for $\theta_{1}=\theta_{c}$
D. $\cos \theta_{3}$ is imaginary for $\theta_{1}=\theta_{c}$

Answer: D

- Watch Video Solution

35. The intensity of light from a continuously emitting laser source operating at 638 nm wavelength is modulated at 1 GHz . The modulation is done by momentarily cutting the intensity off with a frequency of 1 GHz . What is the farthest distance apart two detectors can be placed in the line of the laser light so that they can see the portions of the
same pulse simultaneously ? (consider the speed of light in air $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
A. $30 \mu \mathrm{~m}$
B. 30 cm
C. $3 m$
D. 30 m

Answer: B
(Watch Video Solution
36. A conducting rod, with a resistor of resistance R. is pulled with constant speed v on a smooth conducting rail as shown in figure. A constant magnetic field \vec{B} is directed into the page. If the speed of the bar is doubled, by what factor does the rate of heat dissipation across the resistance R change?

A. 0
B. $\sqrt{2}$
C. 2
D. 4

Answer: D

D Watch Video Solution

37. The time period of a body undergoing simple harmonic motion is given by $T=p^{a} D^{b} S^{c}$, where p is the pressure, D is
density and S is surface tension. The values of a, b and c respectively are

$$
\begin{aligned}
& \text { A. } 1, \frac{1}{2}, \frac{3}{2} \\
& \text { B. } \frac{3}{2},-\frac{1}{2}, 1 \\
& \text { C. } 1,-\frac{1}{2}, \frac{3}{2} \\
& \text { D. }-\frac{3}{2}, \frac{1}{2}, 1
\end{aligned}
$$

Answer: D
38. Consider the following statements
regarding the real images formed with a converging lens. I -Real images can be seen only if the image is projected onto the screen .
(2)The real image can be seen only from the
same side of the lens as that on which the object is positioned. (3)Real images produced by converging lenses are not only laterally but also longitudinally inverted as with mirrors.

Which of the above statement/statements is/are incorrect?
A. Only I and III
B. All three
C. None
D. only II

Answer: B

D Watch Video Solution

39. A zinc ball of radius, $\mathrm{R}=1 \mathrm{~cm}$ charged to a potential -0.5 V . The ball is illuminated by a monochromatic ultraviolet (UV) light with a
wavelength 290 nm . The photoelectric
threshold for zinc is 332 nm . The potential of
ball after a prolonged exposure to the UV is
A. $-0.5 v$
B. $0 v$
C. $0.54 v$
D. $0.79 v$

Answer: C

D Watch Video Solution
40. A source simultaneously emitting light at two wavelengths 400 nm and 800 nm is used in the Young's double slit experiment. If the intensity of light at the slit for each wavelength is I_{0}, then the maximum intensity
that can be observed at any point on the screen is
A. I_{0}
B. $2 I_{0}$
C. $4 I_{0}$
D. $8 I_{0}$

Answer: D

D Watch Video Solution

41. A camera filled with a polarizer is placed on
a mountain in a manner to record only the
reflected image of the sun from the surface of
a shown in the figure. If the sun rise at 6.00

AM and sets at 6.00 PM during the summer,
then at what time in the aftermoon will the recorded image have the lowest intensity, assuming there are no clouds and intensity of
the sun at the sea surface is constant throughout the day?

A. $12.32 P M$
B. $3.32 P M$
C. $5.00 P M$
D. $6.00 P M$

Answer: B
42. Suppose a long rectangular loop of width w is moving along the x -direction with its left arm in a magnetic field perpendicular to the plane of the loop (see figure). The resistance of the loop is zero and it has an inductance L.

At time $t=0$, its left arm passes the origin 0 .

If for $t \geq 0$ the current in the loop is I and the
distance of its left are arm from the origin is x
then I versus x graph will be

Answer: B

- Watch Video Solution

43. Imagine a would where free magnetic charges exist. In this world, a circuit is made with $a \mathrm{U}$ shape wire and a rod free to slide on it. A current carried by free magnetic charges
can flow in the circuit. When the circuit is
placed in a uniform electric field. E perpendicular to the plane of the plane of the circuit and the rod is pulled to the right with a
constant speed v , the "magnetic EMF" in the
current and the direction of the corresponding current. arising because of changing electric flux will be (I is the length of the rod and c is speed of light).
A. vEl clockwise
B. vEL counterclockwise
C. $\frac{v E l}{c^{2}}$ clockwise
D. $\frac{v E l}{c^{2}}$ counterclockwise

Answer: D
44. The box in the circuit below has two inputs marked $v+$ and $v-$ and a single output marked V_{o}. The output obeys
$+10 V$ if $v+>v-$ $V_{0}=-10 V$ if $v+<v-$

The output V_{0} of this circuit a long time after is switched on is best represented by
B.

Answer: A

D Watch Video Solution

45. A bottle has a thin nozzle on top. It is filled
with water, held horizontally at a height of 1 m
and squeezed slowly by hands so that the
water jet coming out of the nozzle hits the
ground at a distance of 2 m . If the area over which the hands squeeze it is $10 \mathrm{~cm}^{2}$. the force applied by hand is close to (take $\mathrm{g}=10$ m / s^{2} and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)

A. 20 N
B. 10 N
C. $5 N$
D. 2.5 N

Answer: B

- Watch Video Solution

46. The circular wire in figure below encircles
solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page.

The clockwise emf around the circular loop is
$\varepsilon 0$. By definition a voltammeter measures the volatage difference between the two pointws given by $V_{b}-V_{a}=-\int_{a}^{b} \bar{E} . d \bar{s}$. We assume that a and b are infinitestically close to each other. The values of $V_{b}-V_{a}$ alon the path 1 and $V_{a}-V_{b}$ along the path 2 , respectively are

$$
\begin{aligned}
& \text { A. }-\varepsilon_{0},-\varepsilon_{0} \\
& \text { B. }-\varepsilon_{0}, 0 \\
& \text { C. }-\varepsilon_{0}, \varepsilon_{0} \\
& \text { D. } \varepsilon_{0}, \varepsilon_{0}
\end{aligned}
$$

Answer: B

- Watch Video Solution

47. A beam of neutrons performs circular motion of radius, $r=1 \mathrm{~m}$, under the influence of an inhomogeneous magnetic field with inhomogeneity extending over $\Delta r=0.01 \mathrm{~m}$.

The speed of the neutrons is $54 \mathrm{~m} / \mathrm{s}$. The mass and magnetic moment of the neutrons respectively are
$1.67 \times 10^{-27} \mathrm{~kg}$ and $9.67 x \times 10^{-27} \mathrm{~J} / \mathrm{T}$. The
average variation of the magnetic field over Dr is approximately.
A. $0.5 T$
B. $1.0 T$
C. $5.0 T$
D. $10.0 T$

Answer: C
(Watch Video Solution
48. A student is jogging on a straight path
with the speed 5.4 km per hour. Perpendicular
to the path is kept a pipe with its opening 8 m
from the road (see figure). Diameter of the pipe is 0.45 m . At the other end of the pipe is
a speaker emitting sound of 1280 Hx to wards
the opening of the pipes. As the student passes in front of the pipe, she hears the speaker for T seconds. T is in the range (Take

A. $6-12$
B. $12-18$
C. $3-6$
D. $18-22$

Answer: A

- Watch Video Solution

49. A solar cell is to be fabricated for efficient conversion of solar radiation to emf using material A. The solar cell is to be mechanically protected with the help of a coating using material B. If the band gap energy of materials

A and B are E_{A} and E_{B} respectively, then which of the following choices is optimum for better performance of the solar cell.
A. $E_{A}=1.5 \mathrm{eV}, E_{B}=5 \mathrm{e} V$
B. $E_{A}=1.5 \mathrm{eV}, E_{B}=1.5 \mathrm{eV}$
C. $E_{A}=3 e V, E_{B}=1.5 \mathrm{eV}$
D. $E_{A}=0.5 \mathrm{eV}, E_{B}=5 \mathrm{eV}$

Answer: A

D Watch Video Solution

50. The "Kangi" is and earthen pot used to stay warm in Kashmir during the winter monts. Assume that the " Kangri" is shericla
and of surface are $7 \times 10^{10-2} \mathrm{~m}^{2}$. It contains

300 g of mixture of coal. Wood and leaves with
calorific value of $30 \mathrm{kj} / \mathrm{g}$ (and provides heat with 10 \% efficiency.) The surface temperature of the "Kangri" is $60^{\circ} \mathrm{C}$ and the room temperature is $0^{\circ} C$. Then, a reasonable estime for the duration t (in hours) that the "kangri" heat will last is (take the "kangri" to be a black body).
A. 8
B. 10
C. 12
D. 16

Answer: B

- Watch Video Solution

