©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

SOLVED PAPER 2018

Example

1. A table has a heavy circular top of radius $1 m$
and mass 20 kg , placed on four light
(considered massless) legs placed
symmetrically on its circumference. The maximum mass that can be kept anywhere on the table without toppling it is close to
A. 20 kg
B. 34 kg
C. 47 kg
D. 59 kg

Answer:

D Watch Video Solution
2. Air (density ρ) is the being down on soap
film (surface tension T) by pipe of radius R
with its opening right next to the film. The film
is deformed and a bubble detached from the
film when the shape of the deformed surface
is a hemisphere. Given that the dynamic
pressure on the film due to the air blown at
speed v is $\frac{1}{2} \rho v^{2}$ the speed at which the bubble is formed is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{T}{\rho R}} \\
& \text { B. } \sqrt{\frac{2 T}{\rho R}}
\end{aligned}
$$

C. $\sqrt{\frac{4 T}{\rho R}}$
D. $\sqrt{\frac{8 T}{\rho R}}$

Answer:

- Watch Video Solution

3. For an ideal gas the internal energy is given by $U=5 P V / 2+C$, where C is a constant.

The equation of the adiabatic in the $P V$ plane will be
A. $p^{5} V^{7}=$ constant
B. $p^{7} V^{5}=$ constant
C. $p^{3} V^{5}=$ constant
D. $p^{5} V^{2}=$ constant

Answer:

D Watch Video Solution

4. A thermally insulated rigid container of one
litre volume contains a diatomic ideal gas at room temperature. A small paddle installed
inside the container is rotated from the outside such that the pressure rises by $10^{5} \mathrm{~Pa}$.

The change in internal energy is close to
A. zero
B. 67 J
C. 150 J
D. 250 J

Answer:

D Watch Video Solution
5. In a Young's double slit experiment the amplitudes of the two waves incident on the two slits are A and $2 A$. If I_{0} is the maximum intensity, then the intensity at a spot on the screen where the phase difference between the two interfering waves is ϕ.
A. $I_{0} \cos ^{2}(\phi / 2)$
B. $\frac{I_{0}}{3} \sin ^{2}(\phi / 2)$
C. $\frac{I_{0}}{9}(5+4 \cos \phi)$
D. $\frac{I_{0}}{9}(5+8 \cos \phi)$

Answer:

D Watch Video Solution

6. Figure below show water flowing through a
horizontal pipe from left to right. Note that
the pipe in the middle is narrower. Choose the most appropriate depiction of water levels in the vertical pipes.
A.

B.

C.

D.

Answer:

- Watch Video Solution

7. A plank is moving in a horizontal direction with a constant acceleration $a \hat{i}$. A uniform
rough cubical block of side l rests on the plank, and is at rest relative to the plank.

Let the center of mass of the block be at
$(0, l / 2)$ at a given instant. If $a=g / 10$, then
the normal reaction exerted by the plank on the block at that instant acts at
A. $(0,0)$
B. $(-1 / 20,0)$
C. (-I/10,0)

D. $(1 / 10,0)$

Answer:

D Watch Video Solution

8. The current is flowing along the path abcd of a cube (shown to the left) produces a magnetic field at the centre of cube of magnitude B. Dashed line depicts the nonconducting part of the cube.

Consider a cubical shape shown to the right which is identical in size and shape to the left.

If the same current now flows in along the path daefgcd, then the magnitude of magnetic field at the centre will be
A. zero
B. $\sqrt{2} B$
C. $\sqrt{3} B$
D. B

Answer:
9. A thin metallic disc is rotating with constant angular velocity about a vertical axis that is perpendicular to its plane and passes through its centre. The rotation causes the free electrons in the disc to redistribute. Assume that there is no external electric or magnetic field. Then
A. a point on the rim of the disc is a higher poential than its centre
B. a point on the rim of the disc is at a lower potential than its centre
C. a point on the rim of the disc is at the same potential as its center
D. the potential in the material has an
extremum between center and the rim

Answer:

D Watch Video Solution

10. One mole of a monatomic gas and one mole of a diatomic gas are initially in the same
state. Both gases are expanded isothermally and then adiabatically such that they acquire
the same final state. Choose the correct statement.
A. Work done by diatomic gas is more than
that by monoatomic gas
B. Work done by monoatomic gas is more
than that by diatomic gas
C. Work done by both the gases are equal
D. Change in internal energies of both the gases are equal

Answer:

- Watch Video Solution

11. Two balls of mass M and $2 M$ are thrown
horizontally with the same initial velocity v_{0}
from top of a tall tower and experience a drag
force of $-k v(k>0)$, where v is the
A. the heavier ball will hit the ground
further away than the lighter ball
B. the heavier ball will hit the ground
closer than the lighter ball
C. both balls will hit the ground at the
same point
D. both balls will hit the ground at the
same time

Answer:

D Watch Video Solution

12. Consider a glass cube of dielectric bound by the planes
$x=0, x=a, u=0, y=b, z=0, z=c$,
with $b>a>c$. The slab is placed in air andhas a refractive index of n. The minimum
value of n such that all rays entering the dielectric at $y=0$ reach $y=b$ is
A. 1
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer:

D Watch Video Solution

13. The graph shows the log of activity $(\log R)$ of a radioactive material as a function of time t in minutes

The half -life (in minutes) for the decay is closest to
A. 2.1
B. 3
C. 3.9
D. 4.4

Answer:

D Watch Video Solution
14. The magnetic field is uniform for $y>0$ and points into the plane. The magnetic field is uniform and points out of the plane for $y<0$.

A proton denoted by filled circle leaves $y=0$
in the y direction with some speed as shown below.

Which of the following best denotes the trajectory of the proton.
A.

B.
C.

D.

Answer:

- Watch Video Solution

15. The Hitomi satellite recently observed the Lyman alpha emission line ($n=2$ to $n=1$) of

Hydrogen-like iron ion (atomic number of iron is 26) from the Perseus galaxy cluster. The wavelength of the line is closest to
A. $2 \AA$
B. $1 \AA ̊$
C. $50 \AA$
D. $10 \AA$

Answer:
16. Assume that the drag force on a football depends only on the density of the air, velocity of the ball and the cross-sectional area of the ball. Balls of different sizes but the same density are dropped in an air column. The terminal velocity reached by balls of masses $250 g$ and $125 g$ are in the ratio :
A. $2^{\frac{1}{6}}$
B. $2^{\frac{1}{3}}$
C. $2^{\frac{1}{2}}$
D. $2^{\frac{2}{3}}$

Answer:

D Watch Video Solution

17. An electrostatic field line leaves at an angle
α from pint change q_{1} and connects with point charge $-q_{2}$ at an angle β (q_{1} and q_{2} are positive) (see figure below). If $q_{2}=\frac{3}{2} q_{1}$ and
$\alpha=30^{\circ}$, then
A. $0^{\circ}<\beta<30^{\circ}$
B. $\beta=30^{\circ}$
C. $30^{\circ}<\beta \leq 60^{\circ}$
D. $60^{\circ}<\beta \leq 90^{\circ}$

Answer:

- Watch Video Solution

18. A wheel of radius R is trapped in a mud pit
and spinning. As the wheel is spinning, it splashes mud blobs with initial speed u from
various points on its circumference . the maximum height from the center of the wheel , to which mud blob can reach is
A. $u^{2} / 2 g$
B. $\frac{u^{2}}{2 g}+\frac{g R^{2}}{2 u^{2}}$
C. 0
D. $R+\frac{u^{2}}{2 g}$

Answer:

D Watch Video Solution

19. Two rods of copper and iron with the same cross sectional area are joined at S and a
steady current i flows through the rods as shown in the figure

Choose the most appropriate representation of charges accumulated near the junction S.
A.

$$
\left.l \bigcap \bigcap^{\mathrm{Cu}} \stackrel{+}{ \pm}+\bigcup^{+}\right)=\stackrel{\mathrm{Fe}}{\square} l
$$

B.
C.

D.

$$
l \bigcap \begin{array}{ll}
\mathrm{Cu} & \bar{Z} \\
& \bar{Z} \\
\hline & \mathrm{Fe} \\
& l
\end{array}
$$

Answer:

20. Graphs below show the entropy vs energy (
U) of two systems I and II at constant volume.

The initial energies of the systems are indicated by $U I, i$ and $U I I, i$ respectively.

Graphs are drawn to the same scale. The same
scale . the systems are then brought into
thermal contact with each other. Assume that
at all Time the combined energy of the two
systems remains constant. Choose the most
appropriate option indicating the energies of
the two systems and the total entropy after
they achieve the equilibrium.
A. U_{1} increases and U_{2} decreases and the
total entropy remains the same
B. U_{1} decreases and U_{2} increases and the
total entropy remains the same
C. U_{1} increases and U_{2} decreases and the total entropy increases
D. U_{1} decreases and U_{2} increases and the total entropy increases

Answer:

- Watch Video Solution

21. The image of an object O due to reflection
from the surface of a lake is elongated due to
the ripples on the water surface caused by a light breeze. This is because the ripples act as
tilted mirrors as shown. Consider the case where O and the observer E are at the same height above the surface of the lake. If the maximum angle that the ripples make with the
horizontal is a, the angular extent δ of the
image will be
A. $\frac{\alpha}{2}$
B. α
C. 2α
D. 4α

Answer:

D Watch Video Solution
22. A spiral galaxy can be approximated as an infinitesimally thin disk of a uniform surface mass density (mass per unit area) located at $z=0$. Two stars A and B start from rest from
heights $2 z_{0}$ and $z_{0}\left(z_{0} \ll\right.$ radial extent of the disk), respectively, and fall towards the disk, cross over to the other side, and execute periodic oscillations. The ratio of time periods of A and B is
A. $2^{-1 / 2}$
B. 2
C. 1

$$
\text { D. } 2^{1 / 2}
$$

Answer:

D Watch Video Solution

23. Two mutually perpendicular long straight conductors carrying uniformly distributed charges of linear charges densities λ_{1} and λ_{2} are position at a distance a from each other.

How does the interaction between the rods

depends on a ?

A. I / r
B. I / r^{2}
C. r
D. r^{0}

- Watch Video Solution

24. The graph below shows the variation of a force (F) with time (t) on a body which is moving in a straight line. Dependence of force on time is $F \propto t^{n}$. Initially body is rest.

If the speed of the object is $2 m / s$ at $3 s$, the speed at $4 s$ will be approximately (m / s)
A. 2.5
B. 6.5

C. 7.8

D. 3.1

Answer:

(D) Watch Video Solution

