

MATHS

BOOKS - BITSAT GUIDE

BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

Practice Exercise

1. In $\left(33+\frac{1}{33}\right)^n$ if the ratio of 7th term from the beginning to the 7th term from the end is 1/6, then find the value of n.

A. 7

- B. 8
- C. 9
- D. 10

Answer: C

- **2.** In the expansion of $\left[\frac{1}{a}+a^{\log_{10}}a\right]^5$, if the value of the third term is 1000, then the value of a is
 - A. 10
 - B. 100
 - C. 1000
 - D. 99

Answer: B

View Text Solution

3. If
$$z=\left(rac{\sqrt{3}}{2}+rac{i}{2}
ight)^5+\left(rac{\sqrt{3}}{2}-rac{i}{2}
ight)^5$$
 , then

A.
$$Re(z)=0$$

B.
$$Im(z)=0$$

C. Re (z)
$$> 0$$
, $Im(z) > 0$

D. Re (z)
$$> 0$$
, In (z) < 0

Answer: B

View Text Solution

4. The expression

$$\left[x+\left(x^3-1
ight)^{rac{1}{2}}
ight]^5+\left[x-\left(x^3-1
ight)^{rac{1}{2}}
ight]^5$$
 is a polynomial of degree

A. 5

B. 7

C. 9

D. 6

Answer: B

Watch Video Solution

5. Find the coefficient of x^4 in the expansion of $\left(x/2-3/x^2\right)^{10}$.

A.
$$\frac{305}{256}$$

B. $\frac{405}{256}$

 $\mathsf{C.}\ \frac{504}{256}$ D. 0

Answer: B

- **6.** The expression $7^{2n}+2^{3n-3}.3^{n-1}$, where $n\in N$, is divisible by
 - **A.** 7
 - B. 25
 - C. 2

Answer: B

View Text Solution

7. If 7th term in the binomial expansion of

$$\left(rac{3}{\sqrt[3]{84}}+\sqrt{3}\ln x
ight)^9, x>0$$
 is equal to 729, then x can be

- A. e^2
- B. e
- $\operatorname{C.}\frac{e}{2}$
- D. 2e

Answer: B

8. If the coefficients of the rth, (r + 1)th and (r + 2)th terms in the binomial expansion of $(1 + y)^{(m)}$ are in A.P., then m and r satisfy the equation

A.
$$m^2 - m(4r - 1) + 4r^2 + 2 = 0$$

B.
$$m^2 - m(4r+1) + 4r^2 - 2 = 0$$

C.
$$m^2 - m(4r+1) + 4r^2 + 2 = 0$$

D.
$$m^2 - m(4r - 1) + 4r^2 - 2 = 0$$

Answer: B

9. Find the middle term in the expansion of $\left(1+x\right)^{2n}$

A.
$$\frac{1.3.5...(2n-1)}{n!}2^n. x^n$$

B.
$$\frac{1.2.3.4...(n+1)}{(n+1)!}$$

C.
$$\frac{1.2.3.4.\dots n}{n!}$$

D. None of these

Answer: A

Watch Video Solution

10. Find the middle term in the expansion $\left(\frac{2}{3}x^2 - \frac{3}{2x}\right)^{20}$.

A.
$$^{20}C_{10}x^{11}$$

B.
$$^{20}C_9x^{10}$$

C.
$$^{20}C_{10}x^{10}$$

D.
$$^{20}C_9x^9$$

Answer: C

Watch Video Solution

11. If the last term of $\left(2^{1/3}-\frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{3.9^{1/3}}\right)^{\log_3 8}$, then the 5th term from the beginning is

- A. 210
- B. 310
- C. 200
- D. 300

Answer: A

Watch Video Solution

12. In the expansion of $\left(5^{1/6}+2^{1/8}\right)^{100}$, the number of irrational terms are

A. 93

B. 95

C. 97

D. 99

Answer: C

View Text Solution

13. Find the value of the greatest term in the expansion of

$$\sqrt{3}igg(1+rac{1}{\sqrt{3}}igg)^{20}.$$

- A. $\binom{20}{7} \frac{1}{27}$
- $B. \left(\begin{array}{c} 20 \\ 6 \end{array} \right) \frac{1}{81}$
- $\mathsf{C.}\,\frac{1}{9}\!\left(\!\!\begin{array}{c}20\\9\end{array}\!\!\right)$
- D. $\binom{20}{8} \frac{1}{3}$

Answer: A

Watch Video Solution

14. The greatest term in the expansion of $(3+5x)^{15}$, when x=1/5, is

A.
$$^{15}C_{3}$$

B.
$$^{15}C_4.3^{11}$$

C.
$$^{15}C_{10}.3^{10}$$

D.
$$^{15}C_3.3^{13}$$

Answer: B

Watch Video Solution

15. Find the term independent of x in the expansion of $\left(3x-\frac{2}{x^2}\right)^{15}$.

$$\mathrm{A.} - 3003 \! \left(3^{10} \right) \! \left(2^5 \right)$$

$$\mathsf{B.} - 3003 \big(3^{10}\big) \big(2^4\big)$$

C.
$$3003 \left(3^{10}\right) \left(2^{5}\right)$$

D. None of these

Answer: A

Watch Video Solution

- **16.** If p is a real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120, then find the value of p.
 - A. ± 3
 - $B.\pm 1$
 - $\mathsf{C}.\pm 2$
 - D. ± 4

Answer: C

was also visite a contrations

watch video Solution

17. The constant term in the expansion of
$$\left(1+x+\frac{2}{x}\right)^6$$
 is

- A. 479
- B. 517
- C. 569
- D. 581

Answer: D

Watch Video Solution

18. Find the term in $\left(\frac{a}{\sqrt{b}}3+\sqrt{\frac{b}{a3}}\right)^{21}$ which has the same power of aandb.

B. 10

C. 8

D. 6

Answer: A

- **19.** If the coefficient of x^7 and x^8 in $\left(2+\frac{x}{3}\right)^n$ are equal, then n is
 - A. 56
 - B. 55
 - C. 45

D. 15

Answer: B

Watch Video Solution

20. If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42, then find the value of n

- A. 51
- B. 53
- C. 55
- D. 57

Answer: C

21. If the sum of all the coefficients in the expansion of $\left(1-3x+10x^2\right)^n$ is α and the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$ is β , then which of the following is correct ?

A.
$$\alpha=3\beta$$

B.
$$\alpha = \beta^3$$

C.
$$\beta=lpha^3$$

D.
$$\alpha=2\beta$$

Answer: B

22. If $C_0,\,C_1,\,C_2,\,\ldots,\,C_n$ denote the binomial coefficients

in the expansion of $(1+x)^n$, then

$${C_0}^2 + 2{C_1}^2 + 3{C_2}^2 + ... + (n+1){C_n}^2 =$$

A.
$$\left(2n+1
ight)^{2n}C_n$$

$$\mathsf{B.}\,(2n-1)^{2n}C_n$$

C.
$$\left(rac{n}{2}+1
ight)^{2n}C_n$$

D.
$$\left(\frac{n}{2}+1\right)^{2n-1}C_n$$

Answer: C

Watch Video Solution

23. If a_1, a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of $(1+x)^n$, then prove that:

$$rac{a_1}{a_1+a_2}+rac{a_3}{a_3+a_4}=rac{2a_2}{a_2+a_3}$$

B.
$$\frac{2a_2}{a_3}$$

$$\mathsf{C.}\ \frac{a_2}{a_2+a_3}$$

D.
$$\frac{a_3}{a_2}$$

Answer: A

24. The ratio of the coefficient of
$$x^{15}$$
 to the term independent of x in the expansion of $\left(X^2 + \frac{2}{x}\right)^{15}$ is

- B. 7:64
- C. 1: 4
- D. 1:32

Answer: D

- **25.** The coefficient of the term independent of x in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$
 - A. 4
 - B. 120
 - C. 210
 - D. 310

Answer: C

Watch Video Solution

26. The coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$ is :

$$A. - 132$$

$$B. - 144$$

C. 132

D. 144

Answer: B

27. The value of
$${}^{50}C_4 + \sum_{r=1}^6 {}^{56-r}C_3$$
, is

A.
$$^{56}C_4$$

B.
$$^{56}C_3$$

$$\mathsf{C}.$$
 $^{55}C_3$

D.
$$^{55}C_4$$

Answer: A

Watch Video Solution

28. If
$$\binom{n}{r+1}=56$$
, $\binom{n}{r}=28$ and $\binom{n}{r-1}=8$, then

$$n+r$$
 is equal to

A. 8

B. 10

C. 12

D. 9

Answer: B

Watch Video Solution

then find the value of $a_2+a_4+a_6+ \ +a_{12}\cdot$

 $\mathsf{lf} \quad \left(1+x-2x^2\right)^6 = 1 + a_1 x + a_2 x^{12} + \\ + a_{12} x^{12},$

A. 32

B. 63

C. 64

D. 31

Answer: D

Watch Video Solution

30. The least positive integer n such that

$$inom{n-1}{3}+inom{n-1}{4}>inom{n}{3}$$
 is

A. 6

B. 7

C. 8

D. 9

Answer: C

31. If
$$C_r = inom{10}{r}$$
 , then $\Sigma_{r=1}^{10} C_{r-1} C_r$ is equal to

A.
$$\binom{20}{9}$$

B.
$$\binom{20}{10}$$

$$\mathsf{C.} \left(\frac{20}{13} \right)$$

D.
$$\binom{20}{8}$$

Answer: A

Watch Video Solution

32. In $n \in N$, then $121^n - 25^n + 1900^n - (-4)^n$ is divisible by

A. 1904

- B. 2000
- C. 2002
- D. 2006

Answer: B

Watch Video Solution

- **33.** The remainder left out when $8^{2n}-\left(62
 ight)^{2n+1}$ is divided by

9 is:

- A. 0
- B. 2
- C. 7
- D. 8

Answer: B

Watch Video Solution

34. If $x=7+4\sqrt{30}^{2n}=[x]+f$, then the value of x(1-f) is

A.
$$2^{2n}$$

B.
$$3^{2n}$$

$$c. 1^{2n}$$

Answer: C

View Text Solution

35. The expression $n^3+3n^2+5n+3, n\in N$ is divisible by

A. 3

B. 4

C. 5

D. 6

Answer: A

View Text Solution

36. The sum of the series

 $.^{20}~C_0 - .^{20}~C_1 + .^{20}~C_2 - .^{20}~C_3 + ... - . ~ + .^{20}~C_{10}$ is -

A. $-{}^{20}C_{10}$

B.
$$\frac{1}{2}^{20}C_{10}$$

C. 0

D. $^{20}C_{10}$

Answer: B

37.

Watch Video Solution

A.
$$\frac{(n+1)(n+2)}{2}$$

 $(a+b+c)^n$, where $n \in N$.

B. n+1

The

 $\mathsf{C}.\,n+2$

D. (n+1)n

number of terms in the expansion

of

Answer: A

Watch Video Solution

38. The vaule of $\displaystyle\sum_{r=0}^{n-1} \left(rac{C_r}{^nC_r+^nC_{r+1}}
ight.$ is equal to

A.
$$\frac{n}{2}$$

B.
$$\frac{n+1}{2}$$

$$\mathsf{C.}\,\frac{n-1}{2}$$

D. 2n

Answer: A

39. The sum of the rational terms in the binomial expansion of $\left(2^{\frac{1}{2}}+3^{\frac{1}{5}}\right)^{10}$ is :

A. 25

B. 32

C. 9

D. 41

Answer: D

Watch Video Solution

40. If a and b are the coefficients of x^r and x^{n-r} , respectively in the expansion of $(1+x)^n$, then

B.
$$a+b=n^2$$

$$\mathsf{C}.\,a=nb$$

D.
$$a+b=2^{n/2}$$

Answer: A

Watch Video Solution

41. If n is a positive integer, then $\left(\sqrt{3}+1\right)^{2n}-\left(\sqrt{3}-1\right)^{2n}$ is

A. an irrational number

B. an odd positive integer

C. an even positive integer

D. a rational number other than positive integers

Answer: A

Watch Video Solution

42. Prove the following by the principle of mathematical induction:

$$rac{1}{3.\,7} + rac{1}{7.\,11} + rac{1}{11.\,15} + + rac{1}{(4n-1)(4n+3)} = rac{n}{3(4n+3)}$$

A.
$$\frac{n}{3(4n+3)}$$

$$3(4n+3)$$
B. $\frac{n}{5(5n+3)}$

$$\mathsf{C.}\,\frac{n}{3(7n+3)}$$

D. 0

Answer: A

43. In the expansion of
$$\left(x^3-rac{1}{x^2}
ight)^{15}$$
 , the constant term,is

A.
$$^{15}C_9$$

B. 0

C. $^{10}C_{9}$

D. $-{}^{15}C_9$

Answer: D

44. If
$$s_n=\sum_{r=0}^n \frac{1}{\cdot^n C_r}$$
 and $t_n=\sum_{r=0}^n \frac{r}{\cdot^n C_r}$, then $\frac{t_n}{s_n}$ is

A.
$$\frac{n}{2}$$

equal to

B.
$$\frac{n}{2} - 1$$

$$C. n - 1$$

$$\mathsf{D.}\,\frac{2n-1}{2}$$

Answer: A

Watch Video Solution

The number of terms in the expansion $\left(1+5\sqrt{2}x
ight)^{19}+\left(1-5\sqrt{2}x
ight)^{19}$ is

- A. 10
- B. 7
- C. 13
- D. 4

Answer: A

Watch Video Solution

Bitsat Archives

- **1.** $2^{3n}-7n-1$ is divisible by
 - A. 64
 - B. 36

C. 49

D. 25

Answer: C

Watch Video Solution

- **2.** If n is a positive integer, then n^3+2n is divisible by
 - A. 2
 - B. 6
 - C. 15
 - D. 3

Answer: D

3. The sum of the coefficients in the expansion of $(5x-4y)^n$

, where n is a positive integer, is

A. 0

B. n

C. 1

D. -1

Answer: C

4. Let
$$a = \sum\limits_{n=0}^{\infty} \frac{x^{3n}}{(3n)} \,!, \, b = \sum\limits_{n=1}^{\infty} \frac{x^{3n-2}}{3n-2} \,!$$
 and

$$C = \sum_{n=1}^{\infty} \frac{x^{3n-1}}{3n-1}!$$
 and w be a complex cube root of unity

Statement 1: a+b+c

$$=e^{x}, a + bw + cw^{2} = e^{wx}$$
 and $a + bw^{2} + cw = e^{w^{2}}$

Statement 2: $a^3 + b^3 + C^3 - 3abc = 1$

A. 1

B. 0

C. -1

D.-2

Answer: A

5.
$$10^n+3ig(4^{n+2}ig)+5$$
 is divisible by $(n\in N)$

A. 7

B. 5

C. 9

D. 17

Answer: C

Watch Video Solution

6. The coefficient of x^n in the expansion of $\log_e\left(\frac{1}{1+x+x^2+x^3}\right)$, when n is odd, is

$$\lambda = \frac{\lambda}{r}$$

C.
$$\frac{1}{n}$$

 $\mathrm{D.}\,\frac{2}{n}$

Answer: B

7. Find the value of

$$^{\circ}$$
 (8) C_{\circ}

$$rac{\hat{}(8)C_0}{6} - ^8C_1 + ^8C_2 imes 6 - ^8C_3 imes 6^2 + \ldots + ^8C_8 6^7$$

$$\mathsf{B.}\,6^7$$

D.
$$\frac{5^8}{6}$$

 $C.6^8$

Answer: D

Watch Video Solution

8. If the coefficient of second, third and fourth terms in the expansion of $(1+x)^n$ are in AP, then n is equal to

A. 7

B. 4

C. 5

D. 6

Answer: A

9. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n$$
, then

$$C_0 + 3C_1 + 5C_2 + \ldots + (2n+1)C_n =$$

A. 3^n

 $B. 2^n$

C. 1

D. 0

Answer: D

Watch Video Solution

10. The value of $\left(\sqrt{5}+1\right)^5-\left(\sqrt{5}-1\right)^5$ is

A. 252

- B. 352
- C. 452
- D. 552

Answer: B

Watch Video Solution

11. The coefficient of x^5 in the expansion of $\left(2-x+3x^2\right)^6$

is

- A. 4692
- B. 4692
- C. 2346
- D. -5052

Answer: D

Watch Video Solution

12. If $C_1,C_2,C_3,\ldots C_n$ denote the coefficients in the binomial expansion of $(1+x)^n$, then the value of $^nC_1+2.~^nC_2+3.~^nC_3+\ldots +n.~^nC_n$ is

A.
$$(n-1)2^n$$

B.
$$n.2^{n-1}$$

C.
$$n.2^{n+1}$$

D. None of these

Answer: B

13. Larger of $99^{50} + 100^{50}$ and 101^{50} is

A.
$$101^{50}$$

$$\mathsf{B.}\,99^{50}+100^{50}$$

C. Both are equal

D. None of these

Answer: A

14.
$$\dfrac{1}{n!} + \dfrac{1}{2!(n-2)!} + \dfrac{1}{4!(n-4)!} + ...$$
 is equal to

A.
$$\frac{2^{n-1}}{n!}$$

$$\mathsf{B.}\,\frac{2^n}{(n+1)\,!}$$

$$\mathsf{C.}\,\frac{2^n}{n!}$$

D.
$$\frac{2^{n-2}}{(n-1)!}$$

Answer: A

Watch Video Solution

15. When 2^{301} is divided by 5, the least positive remainder is

A. 4

B. 8

C. 2

D. 6

Answer: C

Watch Video Solution

16. The middle term in the expansion of $\left(x-\frac{1}{x}\right)^{18}$ is

A.
$$^{18}C_{9}$$

B.
$$-{}^{18}C_{9}$$

C.
$$^{18}C_{10}$$

D.
$$-{}^{18}C_{10}$$

Answer: B

