©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

CONIC SECTIONS

Practice Exercise

1. The curve described parametrically by
$x=t^{2}+t+1, y=t^{2}-t+1$ represents
A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola

Answer: c

D Watch Video Solution

2. Consider a circle with its centre lying on the
focus of the parabola $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then,
the point of intersection of the circle and the parabola is
A. $\left(\frac{p}{2}, p\right)$ or $\left(\frac{p}{2},-p\right)$
B. $\left(\frac{p}{2}, \frac{-p}{2}\right)$
C. $\left(\frac{-p}{2}, p\right)$
D. $\left(\frac{-p}{2}, \frac{-p}{2}\right)$

Answer: a

D View Text Solution
3. Find the equation of the parabola with vertex $(0,0)$ and passing through $(2,3)$ and axis is along the x-axis.

$$
\begin{aligned}
& \text { A. } x^{2}=\frac{9}{2} y \\
& \text { B. } y^{2}=\frac{9}{2} x \\
& \text { C. } y^{2}=\frac{9}{2} x \\
& \text { D. } x^{2}=-\frac{9}{2} y
\end{aligned}
$$

Answer: b

- Watch Video Solution

4. If $(0,4)$ and $(0,2)$ are respectively the vertex and focus of a parabola, then its equation is

> A. $x^{2}+8 y=16$
> B. $x^{2}+8 y=32$
> C. $x^{2}+16 y=30$
> D. $x^{2}-8 y=32$

Answer: b

D Watch Video Solution
5. Find the equation of the parabola whose axis is parallel to X-axis and which passes through the point $(0,4),(1,9)$ and $(-2,6)$. Also, find its latusrectum.

$$
\begin{aligned}
& \text { A. } y=2\left(x+\frac{3}{4}\right)^{2}+\frac{23}{8} \\
& \text { B. } y=2\left(x+\frac{3}{2}\right)^{2}-\frac{1}{2} \\
& \text { C. } y=2\left(x+\frac{3}{5}\right)^{2}+\frac{1}{2} \\
& \text { D. } y=2\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}
\end{aligned}
$$

Answer: a
6. PQ is a double ordinate of a parabola $y^{2}=4 a x$. Find the locus of its points of trisection.

$$
\begin{aligned}
& \text { A. } 9 y^{2}=8 a x \\
& \text { B. } 9 y^{2}=4 a x \\
& \text { C. } 25 y^{2} y^{2}=16 a x \\
& \text { D. } 3 y^{2}=4 a x
\end{aligned}
$$

Answer: b
7. A parabola has the origin as its focus and
the line $x=2$ as the directrix. Then the vertex of the parabola is at
A. $(2,0)$
B. $(0,2)$
C. $(1,0)$
D. $(0,1)$
8. If the tangent at the point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at Q and R then the mid-point of $Q R$ is
A. $\sqrt{3 y}=3 x+1$
B. $\sqrt{3 y}=-(x+3)$
C. $\sqrt{3 y}=x+3$

$$
\text { D. } \sqrt{3 y}=-(3 x+1)
$$

Answer: a

- Watch Video Solution

9. The equation of the common tangents touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above X-axis, is
A. $x+y=2, x-y=1$
B. $x+y=3, x-y=2$
C. $x+y=1,4 x-2 y=1$
D. $x+2 y=1, x+y-3$

D View Text Solution

10. Find the equation (s) of the common

$$
\begin{aligned}
& \text { tangent(s) to } \quad \text { the } \quad \text { parabola } \\
& y^{2}-4 x-2 y+5=0 \text { and } y^{2}=-4 x
\end{aligned}
$$

A. $x+y=2, x-y=1$
B. $x+y=3, x-y=2$
C. $x+y=1,4 x-2 y=1$
D. $x+2 y=1, x+y=-3$

Answer: c

D Watch Video Solution

11. The locus of the mid-point of the chords of
the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola, is

$$
\begin{aligned}
& \text { A. } y^{2}-2 a x+8 a^{2}=0 \\
& \text { B. } y^{2}+2 a x+8 a^{2}=0 \\
& \text { C. } y^{2}-2 a x-8 a^{2}=0 \\
& \text { D. } y^{2}-a x+8 a^{2}=0
\end{aligned}
$$

D View Text Solution

12. The equation to the line touching both the
parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{1}{8}$
D. $\frac{2}{3}$

Answer: a

D Watch Video Solution

13. Tangents are drawn from $(-2,0)$ to $y^{2}=8 x$, radius of circle(s) that would touch these tangents and the corresponding chord of contact, can be equal to
A. $4(\sqrt{2}+1)$
B. $2(\sqrt{2}-1)$
C. $8 \sqrt{3}$

D. $9 \sqrt{2}$

Answer: a

D View Text Solution

14. The number of distinct normals that can be
drawn to the parabola $y^{2}=4 x$ from the point $\left(\frac{11}{4}, \frac{1}{4}\right)$ is
A. 3
B. 2
C. 1
D. 4

Answer: a

D Watch Video Solution

15. Find the locus of the middle points of the
chords of the parabola $y^{2}=4 x$ which touch
the parabola $x^{2}=-8 y$.

$$
\text { A. } y^{3}-2 x y-8=0
$$

$$
\begin{aligned}
& \text { B. } y^{3}+2 x y-8=0 \\
& \text { C. } y^{3}-2 x y+8=0 \\
& \text { D. } y^{3}-x y-8=0
\end{aligned}
$$

Answer: a

D Watch Video Solution

16. Let P be the point $(1,0)$ and Q a point on
the locus $y^{2}=8 x$. The locus of mid-point of $P Q$ is :
A. $x^{2}-2 x y-8=0$
B. $x^{2}+4 y+2=0$
C. $y^{2}+4 x+2=0$
D. $y^{2}-4 x+2=0$

Answer: d

D Watch Video Solution

17. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ then :

> A. $d^{2}+(2 b+3 c)^{2}=0$
> B. $d^{2}+(3 b+2 c)^{2}=0$
> C. $d^{2}+(2 b-3 c)^{2}=0$
> D. $d^{2}+(3 b-2 c)^{2}=0$

Answer: a

D Watch Video Solution

18. The length of the chord of the parabola $x^{2}=4 a y$ passing through the vertex and having slope tan a, is
A. $4 a \cos e c \alpha \cot \alpha$
B. $4 a \tan \alpha \sec \alpha$
C. $4 a \cos \alpha \cot \alpha$
D. $4 a \sin \alpha \tan \alpha$

Answer: b

D View Text Solution

19. If P is a point on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ whose foci are S and S^{\prime}, then
$P S+P S^{\prime}=8$.
A. 8
B. 7
C. 5
D. 10

Answer: d

- Watch Video Solution

20. The equation of the ellipse whose focus is
(1,-1), directrix $x-y-3=0$ and eccentricity equals $\frac{1}{2}$ is :
A. $7 x^{2}+2 x y+7 y^{2}-10 x+10 y+7=0$
B. $7 x^{2}+2 x y+7 y^{2}+7=0$
C. $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$
D. $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$

Answer: a
21. The number of points outside the ellipse on major axis from which a normal (other than X-axis) can be drawn to the ellipse, is
A. 0
B. 3
C. 5
D. none of these

Answer: a

D View Text Solution
22. The eccentricity of the ellipse with centre at the origin which meets the straight line $\frac{x}{7}+\frac{y}{2}=1$ on the axis of x and the straight line $\frac{x}{3}-\frac{y}{5}=1$ on the axis of y and whose axes lie along the axes of coordinates, is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{2 \sqrt{6}}{7} \\
& \text { C. } \frac{\sqrt{3}}{7} \\
& \text { D. } \frac{\sqrt{5}}{7}
\end{aligned}
$$

- Watch Video Solution

23. If tangent at any point P on the ellipse
$7 x^{2}+16 y^{2}=12$ cuts the tangent at the end points of the major axis at the points A and B, then the circle with $A B$ as diameter passes through a fixed point whose coordinates are
A. $\left(\pm \sqrt{a^{2}-b^{2}}, 0\right)$
B. $\left(\pm \sqrt{a^{2}+b^{2}}, 0\right)$
c. $\left(0, \pm \sqrt{a^{2}-b^{2}}\right)$
D. $\left(0, \sqrt{a^{2}+b^{2}}\right)$

Answer: a

D View Text Solution

24. The muinimum area of the triangle formed
by the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is
A. $a b$
B. $\frac{a^{2}+b^{2}}{2}$

> C. $\frac{(a+b)^{2}}{2}$
> D. $\frac{a^{2}+a b+b^{2}}{3}$

Answer: a

- Watch Video Solution

25. If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\frac{\pi}{2}$ then the eccentricity of the ellipse is
A. $1 / 2$
B. $1 / \sqrt{2}$
C. $\sqrt{3} / \sqrt{2}$
D. $1 / 2 \sqrt{2}$

Answer: b

D View Text Solution

26. $P Q$ is a chord of the ellipse through the centre. If the square of its length is the HM of the squares of major and minor axes, then find its inclination with X -axis.
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. none of these

Answer: a

D View Text Solution

27. The locus of the foot of prependicular drawn from the center of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is
A. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$

Answer: c

D Watch Video Solution

28. Equation of tangent to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ which cut-off equal intercepts on
the axis, is

$$
\begin{aligned}
& \text { A. } y=x+\sqrt{3} \\
& \text { B. } y=-x+\sqrt{3} \\
& \text { C. } y=-x-\sqrt{13} \\
& \text { D. } y=-x-\sqrt{3}
\end{aligned}
$$

Answer: c
29. The equation of tangent to the ellipse $x^{2}+3 y^{2}=3$ which is perpendicular to the line $4 y=x-5$, is
А. $4 x+y+7=0$
B. $4 x+y-23=0$
C. $4 x+2 y+5=0$
D. $4 x+y+23=0$

Answer: a

D Watch Video Solution
30. If the line $x \cos \alpha+y \sin \alpha=p$, is tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the value of $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha$ is
A. p
B. p^{2}
C. $\frac{1}{p^{2}}$
D. none of these

Answer: b
31. The length of the common tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ and the circle $x^{2}+y^{2}=16$ intercepted by
A. 5
B. $2 \sqrt{7}$
C. $\frac{7}{\sqrt{3}}$
D. $\frac{14}{\sqrt{3}}$

Answer: d
32. The distance of the centre of the ellipse $x^{2}+2 y^{2}-2=0$ to those tangents of the ellipse which are equally inclined to both the axes is

$$
\begin{aligned}
& \text { A. } \frac{3}{\sqrt{2}} \\
& \text { B. } \sqrt{3 / 2} \\
& \text { C. } \frac{\sqrt{2}}{3} \\
& \text { D. } \frac{\sqrt{3}}{2}
\end{aligned}
$$

Answer: d
33. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is (1) $x^{2}+16 y^{2}=16$
(2) $x^{2}+12 y^{2}=16$ (3) $4 x^{2}+48 y^{2}=48$
$4 x^{2}+64 y^{2}=48$

$$
\begin{aligned}
& \text { A. } x^{2}+12 y^{2}=16 \\
& \text { B. } 4 x^{2}+48 y^{2}=48
\end{aligned}
$$

C. $4 x^{2}+64 y^{2}=48$

D. $x^{2}+16 y=16$

Answer: a

D Watch Video Solution

34. If the chords of contact of tangents from two poinst $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are at right angles, then find
the value of $\frac{x_{1} x_{2}}{y_{1} y_{2}}$.
A. $\frac{a^{2}}{b^{2}}$
B. $-\frac{b^{2}}{a^{2}}$
C. $-\frac{a^{4}}{b^{4}}$
D. $\frac{b^{4}}{a^{4}}$

Answer: c

D Watch Video Solution
35. If the line $3 y=3 x+1$ is a normal to the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ then the length of the
minor axis of the 5 b2 a ellipse is

> А. 4 or $\frac{2}{2} \sqrt{55}$
> В. 2 or $\frac{2}{5} \sqrt{55}$
C. 3 or $\sqrt{5}$
D. 11 or $\sqrt{13}$

Answer: a

D View Text Solution
36. If θ and ϕ are eccentric angles of the end of
a pair of conjugate diameters of the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then $\theta-\phi$ is equal to
A. $\pm \frac{\pi}{2}$
B. $\pm \pi$
C. 0
D. none

Answer: a
37. If the chords of contact of tangents from
two points $\left(x_{1}, y_{1}\right)$ and (x_(2),y_(2))
\rightarrow theellipse $\left(\mathrm{x}^{\wedge}(2)\right) /\left(5^{\wedge}(2)\right)+\left(\mathrm{y}^{\wedge}(2)\right) /(6)^{\wedge}(2)$
$=1$ areatright $\angle \operatorname{sthen}\left(\mathrm{x}^{\wedge}(1), \mathrm{x}_{-}(2)\right) /\left(\mathrm{y}_{-}(1) \mathrm{y}_{-}(2)\right)^{\wedge}$
is equal to
A. $-\left(\frac{5}{6}\right)^{4}$
B. $\left(\frac{6}{5}\right)^{4}$
C. $-\left(\frac{6}{5}\right)^{4}$
D. $\left(\frac{5}{6}\right)^{4}$
$16 x^{2}-3 y^{2}-32 x-12 y-44=0$ represents
a hyperbola, which one of the following is /are correct
A. the length of whose transverse axis is
$4 \sqrt{3}$
B. the length of whose conjugate axis is 4
C. whose centre is $(-1,2)$

D. whose eccentricity is $\sqrt{19 / 3}$

Answer: d

D Watch Video Solution

39. Let $P(a \sec \theta, b \tan \theta)$ and
$Q(a \sec \phi, b \tan \phi)$, where $\theta+\phi=\frac{\pi}{2}$, be two
points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
If (h, k) is the point of intersection of the normals at P and Q, then k is equal to

$$
\text { A. } \frac{a^{2}+b^{2}}{a}
$$

B. $-\frac{a^{2}+b^{2}}{a}$
C. ${ }^{`}\left(a^{\wedge}(2)+b^{\wedge}(2)\right) /(b)$
D. $-\frac{a^{2}+b^{2}}{b}$

Answer: d

D Watch Video Solution

40. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25} \quad$ coincide write the value of b^{2}.
A. 1
B. 5
C. 7
D. 9

Answer: c

- Watch Video Solution

41. If two points P and Q on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ whose centre c is such that CP
is perpendicualr to CQ $a<b$ then

$$
\begin{aligned}
& \text { A. } \frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{b^{2}}-\frac{1}{a^{2}} \\
& \text { B. } \frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}} \\
& \text { C. } \frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{4 a^{2}}-\frac{1}{b^{2}} \\
& \text { D. } \frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}-\frac{1}{2 b^{2}}
\end{aligned}
$$

Answer: b
42. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is
A. $x^{2} \cos e c^{2} \theta-y^{2} \sec ^{2} \theta=1$
B. $x^{2} \sec ^{2} \theta-y^{2} \cos e c^{2} \theta=1$
C. $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
D. $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Answer: a

D Watch Video Solution
43. If e_{1} is the eccentricity of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ and e_{2} is the eccentricity of the hyperbola passing through the foci of the ellipse and $e_{1} e_{2}=1$ then equation of the hyperbola is
A. $\frac{x^{2}}{9}-\frac{u y^{2}}{16}=1$
B. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=-1$
C. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
D. none of these
44. Let m_{1} and m_{2} be slopes of tengents from a point $(1,4)$ on the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$. Find the point from which the tengents drawn on the hyperbola have slopes
$\left|m_{1}\right|$ and $\left|m_{2}\right|$ and positive intercepts on y axis.

$$
\begin{aligned}
& \text { А. }(-7,2) \\
& \text { B. }(-7,-3)
\end{aligned}
$$

$$
\text { C. }(-7,-4)
$$

$$
\text { D. }(3,-7)
$$

Answer: c

D Watch Video Solution

45. The area of triangle formed by the lines $x-y$
$=0 \mathrm{x}+\mathrm{y}=0$ and any tangent to the hyperbola
$x^{2}-y^{2}=a^{2}$ is
A. $2 a^{2}$
B. $6 a^{2}$
C. a^{2}
D. $4 a^{2}$

Answer: c

D View Text Solution

46. $2 x+\sqrt{6} y=2$ touches the hyperbola
$x^{2}-2 y^{2}=4$, then the point of contact is
A. $(-2 \sqrt{6})$
B. $(-5,2 \sqrt{6})$
C. $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right) 2$
D. $(4,-\sqrt{6}$

Answer: d

D Watch Video Solution

47. The common tangent to $9 x^{2}-4 y^{2}=36$
and $x^{2}+y^{2}=3$ is

$$
\text { A. } y-2 \sqrt{3 x}-\sqrt{39}=0
$$

B. $y+2 \sqrt{3 x}+\sqrt{39}=0$
 C. $y-2 \sqrt{3 x}+\sqrt{39}=0$
 D. none of these

Answer: a

D View Text Solution

48. The locus of the points of intersection of perpendicualr tangents to $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is

$$
\text { A. } x^{2}-y^{2}=7
$$

B. $x^{2}-y^{2}=25$
C. $x^{2}+y^{2}=25$
D. $x^{2}+y^{2}=7$

Answer: d

D Watch Video Solution

49. A tangent to the hyperbola $x^{2}-2 y^{2}=4$ meets x-axis at P and y-aixs at Q. Lines $P R$ and QR are drawn such that OPRQ is a rectangle (where O is origin).Find the locus of R.
A. $\frac{4}{x^{2}}+\frac{2}{y^{2}}=1$
B. $\frac{2}{x^{2}}-\frac{4}{y^{2}}=1$
C. $\frac{2}{x^{2}}+\frac{4}{y^{2}}=-1$
D. $\frac{4}{x^{2}}-\frac{2}{y^{2}}=1$

Answer: d

D Watch Video Solution

50. P is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad N$ is the foot of the
perpendicular from P on the transverse axis.

The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then $O T . O N$ is equal to
A. 9
B. 4
C. e^{2}
D. none

Answer: a

51. Tangents are drawn from points on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ to the circle $x^{2}+y^{2}=9$ the locus of the mid point of the chord of contact is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=\frac{x^{2}}{9}-\frac{y^{2}}{4} \\
& \text { B. }\left(x^{2}+y^{2}\right)=\frac{x^{2}}{9}-\frac{y^{2}}{4} \\
& \text { C. }\left(x^{2}+y^{2}\right)=81 \frac{x^{2}}{9}-\frac{y^{2}}{4} \\
& \text { D. }\left(x^{2}+y^{2}\right)=9 \frac{x^{2}}{9}-\frac{y^{2}}{4}
\end{aligned}
$$

D View Text Solution

52. The equation of a tangent to the hyperbola
$3 x^{2}-y^{2}=3$, parallel to the line $y=2 x+4$
is
A. $y=3 x+4$
B. $y=2 x+1$
C. $y=2 x-2$
D. $y=3 x+5$
53. Chords of the hyperbola $x^{2}-y^{2}=a^{2}$ touch the parabola $y^{2}=4 a x$. The locus of their middle point is the curve

$$
\begin{aligned}
& \text { A. } y^{2}(x-a)=2 x^{2} \\
& \text { B. } y^{2}(x-a)=x^{3} \\
& \text { C. } y^{2}(x-a)=x^{4} \\
& \text { D. } y^{2}(x+a)=x^{3}
\end{aligned}
$$

54. Find the product of the length of perpendiculars drawn from any point on the hyperbola $x^{2}-2 y^{2}-2=0 \quad$ to its asymptotes.
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 2

Answer: b

- Watch Video Solution

55. If $x=9$ is the chord of contact of tangents of
$x^{2}-y^{2}=9$ then the equation of the corresponding tangents is

$$
\begin{aligned}
& \text { A. } 9 x^{2}-8 y^{2}+18 x+9=0 \\
& \text { B. } 9 x^{2}-8 y^{2}-18 x+9=0 \\
& \text { C. } 9 x^{2}-8 y^{2}-18 x-9=0 \\
& \text { D. } 9 x^{2}-8 y^{2}+18 x-9=0
\end{aligned}
$$

Answer: b

D View Text Solution

Bitsat Archives

1. The locus of the points of intersectino of the
tangents at the extremites of the chords of
the ellipse $x^{2}+2 y^{2}=6$ which touches the ellipse $x^{2}+4 y^{2}=4$ is

$$
\text { A. } x^{2}+y^{2}=4
$$

> B. $x^{2}+y^{2}=6$
> C. $x^{2}+y^{2}=9$
> D. $x^{2}+y^{2}=9$

Answer: c

D View Text Solution

2. A variable chord $P Q$ of the parabola $y^{2}=4 a x$ subtends a right angle at the vertex.

The locus of the points of intersection of the normals at P and Q is the parabola
A. a parabola
B. a hyperbola
C. a circle
D. none of the above

Answer: a

D Watch Video Solution

$$
\begin{aligned}
& \text { 3. The foci of the conic } \\
& 25 x^{2}+16 y^{2}-150 x=175 \text { are : }
\end{aligned}
$$

A. (0 ± 3)
B. (0 ± 2)
C. (3 ± 3)
D. (0 ± 1)

Answer: c

D Watch Video Solution
4. The radius of the circle passing through the
foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having
its centre $(0,3)$ is
A. 4
B. $\frac{3}{7}$
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: a

D Watch Video Solution

5. If $O A B$ is an equilateral triangle inscribed in
the parabola $y^{2}=4 a x$ with O as the vertex, then the length of the side of $\triangle \mathrm{OAB}$ is
A. $8 a \sqrt{3}$
B. $4 a \sqrt{3}$
C. $2 a \sqrt{3}$
D. $a \sqrt{3}$

Answer: a

D View Text Solution
6. If the length of the major axis of the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ is three times the length of minor axis, its accentricity is

> A. $\frac{1}{3}$
> B. $\frac{1}{\sqrt{3}}$
> C. $\sqrt{\frac{2}{3}}$
> D. $\frac{2 \sqrt{2}}{3}$

Answer: d

7. Let S and T be the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b h^{2}}=1$ and be an end of the minor axis. If STB is an equilateral triangle, then eccentricity of the ellipse is

> A. $\frac{1}{4}$
> B. $\frac{1}{3}$
> C. $\frac{1}{2}$
> D. $\sqrt{\frac{3}{2}}$

Answer: c
8. The difference of the focal distances of any point on the hyperbola is equal to its
A. latusrectum
B. eccentricity
C. length of the transverse axis
D. half the length of the tranverse axis

Answer: c

9. If the focus of a parabola is at $(0,-3)$ and its directrix is $y=3$, then its equation is

$$
\begin{aligned}
& \text { A. } x^{2}=-12 y \\
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 y \\
& \text { D. } y^{2}=12 x
\end{aligned}
$$

Answer: a

- Watch Video Solution

10. The length of tangent from $(5,1)$ to the circle $x^{2}+y^{2}+6 x-4 y-3=0$ is
A. 81
B. 29
C. 7
D. 21

Answer: c

- Watch Video Solution

11. The length of the latus rectum of the parabola
$169\left\{(x-1)^{2}+(y-3)^{2}\right\}=(5 x-12 y+17)^{2}$
is
A. $\frac{14}{13}$
B. $\frac{12}{13}$
C. $\frac{28}{13}$
D. none

Answer: c
12. If the centre, one of the foci and semi-major axis of an ellipse are $(0,0),(0,3)$ and 5 , then its equation is
A. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
C. $\frac{x^{2}}{9}+\left(\frac{y^{2}}{25}=1\right.$
D. none of these

Answer: a
13. The radius of the director circle of the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. $(a-b)$
B. $\sqrt{a-b}$
C. $\sqrt{a^{2}-b^{2}}$
D. $\sqrt{a^{2}+b^{2}}$

Answer: c
14. The equation of the chord of $y^{2}=8 x$ which is bisected at $(2,-3)$, is
A. $4 x+3 y=1$
B. $4 x-3 y=1$
C. $4 x+3 y=9$
D. none of these

Answer: d

- Watch Video Solution

15. Show that all chords of the curve
$3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.
A. $(1,2)$
B. $(1,-2)$
C. $(-1,2)$
D. $(-1,2)$

Answer: b
16. The line $y=b t$ meets the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in real points if
A. $|t| \leq 1$
B. $|t|>1$
C. $|t|<3$
D. $|t|<4$

Answer: a

D Watch Video Solution
17. The distance between the foci of the hyperbola $x^{2}-3 y^{2}-4 x-6 y-11=0$ is
A. 4
B. 6
C. 8
D. 10

Answer: c
(D) View Text Solution
18. The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the
circle $(x-1)^{2}+(y-2)^{2}=1$ is
A. 0
B. $\sqrt{3}$
C. 4
D. 5

Answer: a

19. For hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$ which
of the following remains constant with change in α
A. abscissae of veritces
B. abscisae of foci
C. eccentricity
D. directrix

Answer: b

20. The equation of the parabola with its vertex at $(1,1)$ and focus $(3,1)$ is

$$
\begin{aligned}
& \text { A. }(x-1)^{2}=8(y-1) \\
& \text { B. }(y-1)^{2}=8(x-3) \\
& \text { C. }(y-1)^{2}=8(x-1) \\
& \text { D. }(x-3)^{2}=8(y-1)
\end{aligned}
$$

Answer: c

- Watch Video Solution

21. The ends of the latusrectum of the conic $x^{2}+10 x-16 y+25=0$ are

$$
\begin{aligned}
& \text { A. } 3,-4),(13,4) \\
& \text { B. }(-3,-4),(13,-4) \\
& \text { C. }(3,4),(-13,4) \\
& \text { D. }(5,-8),(-5,8)
\end{aligned}
$$

Answer: c

- Watch Video Solution

22. The equation to the hyperbola having its eccentricity 2 and the distance between its
foci is 8 is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{12}-\frac{y^{2}}{4}=1 \\
& \text { B. } \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 \\
& \text { C. } \frac{x^{2}}{8}-\frac{y^{2}}{2}=1 \\
& \text { D. } \frac{x^{2}}{16}-\frac{y^{2}}{9}=1
\end{aligned}
$$

Answer: b

- Watch Video Solution

23. The sum of the focal distances of any point
on the conic $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
A. 10
B. 9
C. 41
D. 18

Answer: a
(D) Watch Video Solution
24. The equation of a parabola which passes
through the point of intersection of a straight

line | $x+y$ | $=0 \quad$ and the circel |
| ---: | :--- |
| $x^{2}+y^{2}+4 y$ | $=0$ is | ther

> А. $y^{2}=4 x$
> В. $y^{2}=x$
> C. $y^{2}=2 x$
D. none of these

Answer: c
25. The point (4, -3) with respect to the ellipse $4 x^{2}+5 y^{2}=1$
A. lies on the cureve
B. is inside the curve
C. is outside the curve
D. is focus of the curve

Answer: c

- Watch Video Solution

26. The tangents from a point $(2 \sqrt{2}, 1)$ to the hyperbola $16 x^{2}-25 y^{2}=400$ inculde an angle equal to
A. $\pi / 2$
B. $\pi / 4$
C. π
D. $\pi / 3$

Answer: a

D Watch Video Solution
27. The equation of a straight line drawn through the focus of the parabola $y^{2}=-4 x$ at an angle of 120° to x axis is

$$
\begin{aligned}
& \text { A. } y+\sqrt{3}(x-1)=0 \\
& \text { В. } y-\sqrt{3}(x-1)=1 \\
& \text { С. } y+\sqrt{3}(x+1)=0 \\
& \text { D. } y-\sqrt{3}(x+1)=0
\end{aligned}
$$

Answer: c

D Watch Video Solution

