

MATHS

BOOKS - BITSAT GUIDE

LIMITS CONTINUITY AND DIFFERENTIABILITY

Practice Exercise

1. The value of
$$\lim_{x o 2} rac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x} - 2^{1-x}}}$$
 is

A. 16

B. 8

C. 4

D. 2

Answer: B

View Text Solution

2. Evaluate

$$\lim_{x o 0} \, rac{\sin(3x+a)-3\sin(2x+a)+3\sin(x+a)-\sin a}{x^3}$$

A. 0

B. cos a

 $\mathsf{C.} - \cos a$

D. sin a

Answer: C

Watch Video Solution

- **3.** If $f(x) = \frac{\sin[x]}{[x]}$, $[x] \neq 0$ where [x] denotes the greatest integer less than or equal to x, then $\lim_{x \to 0} f(x)$ equals
 - A. 1
 - B. 0
 - C. 1
 - D. none

Answer: D

View Text Solution

4.
$$(\lim_{x \to 2})_{x \to 2} \left(\frac{\sqrt{1 - \cos\{2(x-2)\}}}{x-2} \right)$$
 (1) does not exist (2) equals $\sqrt{2}$ (3) equals $-\sqrt{2}$ (4) equals $\frac{1}{\sqrt{2}}$

A.
$$\sqrt{2}$$

$$B.-\sqrt{2}$$

$$\mathsf{C.}\,\frac{1}{\sqrt{2}}$$

D. Does not exist

Answer: D

5. The value of
$$\lim_{x \to 0} \frac{1}{x} \left[\tan^{-1} \left(\frac{x+1}{2x+1} \right) - \frac{\pi}{4} \right]$$
 is

A. 1

B.
$$-\frac{1}{2}$$

C. 2

D. 0

Answer: B

6.
$$(\lim)_{x o \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right] isequa < o$$
 (b)

$$\frac{1}{2}$$
 (c) log 2 (d) e^4

$$\mathsf{B.}\;\frac{1}{2}$$

D. e^4

Answer: B

Watch Video Solution

7. $\lim_{x \to 1} \left[x - 1 \right]$ where [] denotes the greatest integer function is equal to

A. 1

B. 2

- C. 0
- D. Does not exist

Answer: D

View Text Solution

- **8.** Find The value of $\lim_{x o \pi} \ \frac{1 + \cos^3 x}{\sin^2 x}$ is

 - A. $\frac{1}{3}$ B. $\frac{3}{2}$
 - $\mathsf{C.}\,\frac{-1}{4}$
 - D. $\frac{-3}{2}$

Answer: B

Watch Video Solution

- **9.** The value of $\lim_{x \to \infty} \frac{(x+2)! + (x+1)!}{(x+2)! (x+1)!}$ is
 - **A.** 1
 - B. 2
 - C. 3
 - D. 4

Answer: A

$$_{\infty}$$

10.
$$\lim_{a \to \infty} \left[\frac{1}{1 - a^4} + \frac{8}{1 - a^4} + \dots + \frac{a^3}{1 - a^4} \right]$$

equal to

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{4}$$

$$\mathsf{C.} - \frac{1}{3}$$

$$\mathsf{D.}-\frac{1}{4}$$

Answer: D

11. If f(x) =
$$\begin{cases} x+2 & x \leq -1 \\ cx^2 & x > -1 \end{cases}$$
 then find c if $\lim_{x \to -1}$ f(x) exists .

$$A. - 1$$

Answer: B

12. The value of
$$\lim_{x o \pi/4} rac{2 - \cot x - \cot^3 x}{1 - \cot^3 x}$$

B. 1

C. 0

D. none of these

Answer: A

Watch Video Solution

13. Find the value of \lim

 $x \rightarrow 0$

 $\sin x - 2\sin 3x + \sin 5x$

 \boldsymbol{x}

A. - 1

B. 0

C. 1

Answer: B

Watch Video Solution

14. If f(x) = $\begin{cases} x^2-1 & 0 < x < 2 \\ 2x+3 & 2 \le x < 3 \end{cases}$ then quadratic equation whose roots are $\lim_{x \to 1}$ f(x) and $\lim_{x \to 2^+}$ f(x is

A.
$$x^2 - 6x + 9 = 0$$

B.
$$x^2 - 7x + 8 = 0$$

C.
$$x^2 - 14x + 49 = 0$$

D.
$$x^2 - 10x21 = 0$$

Answer: D

View Text Solution

15. $\lim_{x o 0} \frac{e^{x^2} - \cos x}{x^2}$ is equal to

- $\mathsf{A.}\;\frac{3}{2}$
- $\mathsf{B.}\;\frac{1}{2}$
- c. $\frac{2}{3}$
- D. None of these

Answer: A

16. The value of
$$\lim_{x\to 0} \frac{(1+x)^{1/x}-e}{x}$$
 is

A. 1

 $\operatorname{B.}\frac{e}{2}$

 $\mathsf{C.} - \frac{e}{2}$

D. $\frac{2}{e}$

Answer: C

Watch Video Solution

17. The value of ordered pair (a,b) such that

$$\lim_{x
ightarrow 0}rac{x(1+a\cos x)-b\sin x}{x^3}=1,$$
 is:

A.
$$(5)/(3), \frac{3}{2}$$
B. $\frac{5}{2}, -\frac{3}{2}$

$$\mathsf{C.}-\frac{5}{2},\;-\frac{3}{2}$$

Answer: C

Watch Video Solution

18.
$$\lim_{n o \infty} \, \sin\!\left[\pi\sqrt{n^2+1}\right]$$
 is equal to

 $A. \infty$

B. 0

C. Does not exist

Answer: B

Watch Video Solution

19. The value of $\lim_{x o \infty} \left(rac{3x-4}{3x+2}
ight)$ is

A. $e^{-1/3}$

B. $e^{-2/3}$

C. $e^{\,-1}$

D. 1

Answer: B

20. Evaluate,
$$\lim_{x \to 1} \frac{x^4-1}{x-1} = \lim_{x \to k} \frac{x^3-k^3}{x^2-k^2}$$
 , then find the value of k.

$$\text{A.}\ \frac{-8}{3}$$

$$\mathsf{B.}\;\frac{5}{3}$$

$$\mathsf{C.}-\frac{5}{3}$$

Answer: D

21.
$$\lim_{x o \infty} \ \left(rac{x+1}{x+2}
ight)^{2x+1}$$
 is equal to

A.
$$e^3$$

B.
$$e^{-3}$$

C.
$$e^{-2}$$

D.
$$e^2$$

Answer: C

View Text Solution

$$22. \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

B.
$$-\frac{1}{6}$$

$$C. -1$$

$$D.-6$$

Answer: B

23.
$$\lim_{x\to 0}\left[\frac{1^x+2^x+3^x+\cdots+n^x}{n}\right]^{\frac{1}{x}}$$
 is equal to

A.
$$\left(n! \right)^{a/n}$$

$$B.(n!)^a$$

$$\mathsf{C.}\,\frac{1}{2a(n!)}$$

Answer: A

Watch Video Solution

24. The polynomial of least degree such that

$$\lim_{x
ightarrow 0} \left(1+rac{x^2+f(x)}{x^2}
ight)^{1/x}=e^2$$
 is

A.
$$2x^3 + x^2$$

B.
$$2x^3 - x^2$$

$$\mathsf{C.}\,2x^2+3x^3$$

D. None of these

Answer: B

Watch Video Solution

25. Evaluate: $(\lim)_{x\stackrel{ ightarrow}{0}} \frac{\sin^{-1}x - \tan^{-1}x}{x^3}$

A.
$$\frac{1}{2}$$

$$\mathsf{C.} - \frac{1}{2}$$

D. None of these

Answer: A

26. The value of p for which the function f(x) =

$$\left\{egin{array}{ll} rac{\left(4^x-1
ight)^3}{\sin\left(rac{x}{p}
ight)\log\left(1+rac{x^2}{3}
ight)} & x
eq 0 \ 12{\left(\log 4
ight)}^3 & x=0 \end{array}
ight.$$
 may be continuous at x =0

is

B. 2

A. 1

C. 3

D. None of these

Answer: D

View Text Solution

27. The value of
$$\lim_{x o 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}}$$
 is

A.
$$(abc)^3$$

C.
$$\left(abc\right)^{1/3}$$

Answer: D

Watch Video Solution

28. The values of a,b and c, such that

$$\lim_{x o 0} \, rac{ae^x - b\cos x + ce^{-x}}{x\sin x}$$
 = 2 are

A.
$$a = 1,b = -2, c = 1$$

B.
$$a = 1,b = 2, c = -1$$

C.
$$a = 1,b = 2, c = 1$$

D.
$$a = -1, b = 2, c = 1$$

Answer: C

29.
$$(\lim)_{x \to \infty} \left(an - \frac{1+n^2}{1+n}\right) = b$$
, where a is a finite number, then $a=1$ (b) $a=0$ (c) $b=1$ (d) $b=-1$

Answer: C

Watch Video Solution

30. The value of f(0), so that the function

is

$$f(x)=rac{{{{\left({27-2x}
ight)}^{2}}-3}}{9-3{{{\left({243+5x}
ight)}^{1/5}}-2}}(x
eq 0)$$
 continuous, is given $rac{2}{3}$ (b) 6 (c) 2 (d) 4

A. 2/3

B. 6

C. 2

D. 4

Answer: C

Watch Video Solution

31. If
$$f(x) = \begin{cases} |x|\cos\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 then $f(x)$ is

- A. discontinuous at x = 0
- B. continuous at x = 0
- C. Does not exist
- D. None of these

Answer: B

32. If
$$f(x)=\left\{egin{array}{ll} rac{\sqrt{1+kx}-\sqrt{1-kx}}{x} & ext{if}-1\leq x<0 \ rac{2x+k}{x-1} & ext{if}0\leq x\leq 1 \end{array}
ight.$$

is continuous at x = 0, then the value of k is

A.
$$\frac{1}{2}$$

B. 1

$$\mathsf{C.}-\frac{3}{2}$$

D.
$$-\frac{1}{2}$$

Answer: D

33. If
$$f(x)=\left\{egin{array}{cc} x^2\sin\left(rac{1}{x}
ight) & x
eq 0 \ 0 & x=0 \end{array}
ight.$$
 , then

A.
$$f(0 + 0) = 1$$

B.
$$f(0-0) = 1$$

C.
$$f(x)$$
 is continuous at $x = 0$

D. None of the above

Answer: C

Watch Video Solution

34. Let f(x) = -1 + |x-2| and g(x) = 1 - |x|

then set of all possible value (s) of for which (fog) (x) is

discontinuous is:

A. {0,2}

B. {0,1,2}

C. {0}

D. an empty set

Answer: D

Watch Video Solution

35. If f(x) =
$$\begin{cases} |x| + 3 & \text{if } x \le -3 \\ -2x & \text{if } -3 < x < 3 \text{then } \mathrm{f(x) is} \\ 6x + 2 & \text{if } x \ge 3 \end{cases}$$

A. continuous at x = -3 and discontinuous at x = 3

B. continuous at x = -3, 3

C. discontinuous at x = -3, 3

D. continuous at x = 3 and discontinuous at x = -3

Answer:

View Text Solution

36. If the function $f(x) = \frac{(3x + 4\tan x)}{x}$ continuous at x=0? If not, hwo may the funcation be defined to make it continuous at this point?

A.
$$f(x)$$
 = $\begin{cases} rac{3x+4 an x}{x} & x
eq 0 \\ 7 & x = 0 \end{cases}$
B. $f(x)$ = $\begin{cases} rac{3x+4 an x}{x} & x
eq 0 \\ 6 & x = 0 \end{cases}$

C.
$$f(x) = \left\{ egin{array}{ll} rac{3x+4\tan x}{x} & x=0 \ 7 & x
eq 0 \end{array}
ight.$$

Answer: A

Watch Video Solution

37. The value of
$$f(0)$$
 so that the function $f(x)=rac{2x-\sin^{-1}x}{2x+\tan^{-1}x}$ is continuous at each point on its domain is:

$$B. -\frac{1}{3}$$

A. $\frac{1}{3}$

$$\mathsf{C.}\,\frac{2}{3}$$

D.
$$\frac{-2}{3}$$

Answer: D

$$f(x)=\left\{egin{array}{ll} rac{k\cos x}{\pi-2x}, & ext{if} & x
eq rac{\pi}{2} \ 3, & ext{if} & x=rac{\pi}{2} \end{array}
ight.$$
 is continuous at $x=rac{\pi}{2}$?

- A. 1
- B. 3
- C.R
- D. 6

Answer: A

Watch Video Solution

39. If
$$f(x) = \begin{cases} |x - a| \sin \frac{1}{x - a} & \text{if } x \neq a \\ 0 & \text{if } x = a \end{cases}$$
 then $f(x)$ is

- A. continuous at x = a
- B. discontinuous at x = a
- C. discontinuous for all $x \in R$
- D. None of the above

Answer: B

View Text Solution

40. The value of p and q for which the function

$$f(x) = \left\{ egin{array}{ll} rac{\sin{(\,p+1\,)\,x} + \sin{x}}{x} &, & x < 0 \ q &, & x = 0 \ rac{\sqrt{x + x^2} - \sqrt{x}}{x^{1/2}} &, & x > 0 \end{array}
ight.$$

is continuous for all x in R, are

A.
$$p=rac{5}{2}, q=rac{1}{2}$$

B.
$$p=\ -rac{3}{2}, q=rac{1}{2}$$

$$\operatorname{C.} p = \frac{1}{2}, q = \frac{3}{2}$$

D.
$$p = \frac{1}{2}, q = -\frac{3}{2}$$

Answer: D

41. If f(x) = $\begin{cases} x^k \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continous at x =0 then

A.
$$k\in(-\infty,0)$$

B.
$$k\in(1,\infty)$$

$$\mathsf{C}.\,k\in(\,-\,1,\infty)$$

D. none of these

Answer: D

/iew Text Solution

42. If $f(x) = \frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{}$, then we value of f at x = 0, so that f is continuous everywhere, is `

A.
$$1/4$$

$$B. -1$$

Answer: C

Watch Video Solution

43. The function defined by

$$f(x)=\left\{egin{aligned} \left(x^2+e^{rac{1}{2-x}}
ight)^{-1},&x
eq2\ k&,&x=2 \end{aligned}
ight.$$
 is continuous from

right at the point x =2, then k is equal to

$$\cdot \frac{1}{2}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{1}{4}$$
D. $\frac{1}{5}$

Answer: C

Watch Video Solution

44. If f(x) =
$$\frac{\left(3^x-1\right)^2}{\sin x. \log_e(1+x)}$$
, $x \neq 0$ is continuous at x =0 then f(0) is

- A. $\log_e 3$
- C. $(\log_e 3)^2$

 $\mathsf{B.}\, 2\mathsf{log}_e 3$

D. None

Answer: C

Watch Video Solution

45. If a function $f: R \to R$ satisfy the equation f(x+y) = f(x)+f(y) , $\forall x,y$ and the function (x) is continuous at x =0 then

- A. f(x) is continuous for all positive real values of x
- B. f (x) is continuous for all x
- C. f(x) = 0 for all x
- D. None of the above

View Text Solution

46. Find the values of a and b sucht that the function f defined by

$$fx = egin{cases} rac{x-4}{|x-4|} + a & ext{if} & x < 4 \ a+b & ext{if} & x = 4 \ rac{x-4}{|x-4|} + b & ext{if} & x > 4 \end{cases}$$

is a continous function at x=4 .

A.
$$a = 1$$
 and $b = -1$

B.
$$a = -1$$
 and $b = 1$

C.
$$a = 0$$
 and $b = -1$

D.
$$a = 1$$
 and $b = 0$

Answer: A

Watch Video Solution

47. If
$$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}$$
, $x \neq \frac{\pi}{4}$ then the value of $f\left(\frac{\pi}{4}\right)$ so that $f(x)$ becomes continous at $x = \frac{\pi}{4}$ is

A.
$$\frac{1}{2}$$

$$B.-\frac{1}{2}$$

C. 1

D. 9

Answer: A

48.
$$f(x)=\left\{egin{array}{ll} rac{1-\cos4x}{x^2} & x<0 \ =a & x=0 \ ext{if the function be} \ =rac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4} & x>0 \end{array}
ight.$$

continuous at x = 0, then a =

- A. 2
- B. 4
- C. 6
- D. 8

Answer: D

49. If the function

$$f(x) = \left\{egin{aligned} x + a^2\sqrt{2}\sin x, & 0 \leq x < rac{\pi}{4} \ x\cot x + b, & rac{\pi}{4} \leq x < rac{\pi}{2} \ b\sin 2x - a\cos 2x, & rac{\pi}{2} \leq x \leq \pi \end{aligned}
ight.$$

is continuous in the interval $[0,\pi]$ then the values of (a,

b) are

A. (0,0)

$$\mathsf{B.}\left(0,\frac{1}{2}\right)$$

C. (0,1)

D. (-1,1)

Answer: A

50. If f(x) =
$$\frac{a \sin x + \sin 2x}{x^3} \neq 0$$
 and f(x) is continuous at x =0 then

B.
$$f(0) = 1$$

Answer: C

51.
$$f(x)=3x^{10}$$
– $7x^8+5x^6-21x^3+3x^2$ – 7, then is the value of $\lim_{h o 0}rac{f(1-h)-f(1)}{h^3+3h}$ is

A.
$$\frac{53}{3}$$
B. $\frac{22}{3}$

D.
$$\frac{22}{13}$$

Answer: A

Watch Video Solution

52. Given that f'(B) = 6 and f'(A) = 4 then

$$\lim_{h o 0}rac{fig(2h+2+h^2ig)-f(2)}{f(h-h^2+1)-f(1)}$$
 is :

A. 3

$$\mathsf{B.}-3/2$$

C.3/2

D. Does not exist

Answer: A

Watch Video Solution

53. If f(x) =
$$\left\{ egin{array}{ll} e^x & x \leq 0 \\ |1-x| & x>0 \end{array}
ight.$$
 then

A. f(x) is differentiable at x = 0

B. f(x) is continuous at x = 0,1

C. f(x) is differentiable at x = 1

D. None of the above

View Text Solution

54.

The

function

$$f(x)=\left\{egin{array}{ll} |x-3|,&x\geq 1\ \left(rac{x^2}{4}
ight)-\left(rac{3x}{2}
ight)+rac{13}{4},&x< 1 \end{array}
ight.$$
 is

A. continuous at x = 1

B. continuous at x = 3

C. differentiable at x = 1

D. All of these

Answer: C

....

55. If
$$\lim_{x o 0}rac{\log(ext{a}+ ext{x}) ext{-} \ \log a}{x} + k\lim_{x o 0}rac{\log x-1}{x-e} = 1$$

A.
$$k = e \left(1 - \frac{1}{a}\right)$$

B. k = e (1+a)

then

C. k=e (2-a)

D. equality is not possible

Answer: A

56. If
$$f(x)=\left\{egin{array}{ll} xe^{-\left(rac{1}{|x|}+rac{1}{x}
ight)} & x
eq 0 \ 0 & x=0 \end{array}
ight.$$
 then f(x) is

A. continuous as well as differentiable for all x

B. continuous for all x but not differentiable at x = 0

C. neither differentiable nor continuous at x = 0

D. discontinuous everywhere

Answer: B

Watch Video Solution

57. Consider the greatest integer function, defined by

 $f(x) = [x], 0 \leq x < 2$. Then,

A. f is derivable at x = 1

B. f is not derivable at x = 1

C. f is derivable at x = 2

D. None of these

Answer: B

Watch Video Solution

58. Let $f(\mathbf{x}) = \lambda + \mu |x| + v |x|^2$ where λ, u, v are real constants . Then $f(\mathbf{0})$ exists if

A. $\mu=0$

B. v=0

$$\mathsf{C}.\,\lambda=0$$

D.
$$\mu = v$$

Answer: A

View Text Solution

59. Consider a function $f : R \to R$ which satisfies the equation $f(x + y) = f(x) \cdot f(y)$, $\forall x, y \in R$, $f(x) \neq 0$. Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then, f(x) is equal to

A. f(x)

B.2 f(x)

C.
$$\frac{1}{2}f(x)$$

D. None

Answer: B

View Text Solution

60. Consider the function f(x) defined by

$$f(x) = \left\{egin{array}{ll} x & \leq 1 \ x^2 + bx + c & x > 1 \end{array}
ight.$$

Let f(x) exists finitely $orall x \in R$. Then

A. b=-1 ,
$$\mathsf{c} \ \in R$$

B.
$$c=1,b\in R$$

C.
$$b = 1, c = -1$$

D.
$$b = -1, c = 1$$

Answer: D

View Text Solution

61. Consider the function $f(x) = |\log_e x| \ \forall x > 0$. Then

A. LHD does not exist at x = 1

B. RHD does not exist at x = 1

C. f is differentiable at x = 1

D. f is not differentiable at x = 1

Answer: D

62. Consider the function f (x) defined by f (x) =
$$|x - y|$$

$$2|+|x|+|x+2|$$
. Then

A. f is derivable at
$$x = 0, 2$$

B. f is derivable at
$$x = -2, 0$$

C. f is derivable at
$$x = -2.2$$

D. f is not derivable at
$$x = -2, 0, 2$$

Answer: D

View Text Solution

Bitsat Archives

1.
$$\lim_{x \to 0} (1+x)^8 - 1$$
 is equal

A. 8

B. 6

C. 4

D. 2

Answer: C

View Text Solution

2. $\lim_{x o an^{-1}3}rac{ an^2x-2 an x-3}{ an^2x-4 an x+3}$ is equal to

- A. 1
- B. 2
- C. 0
- D. 3

View Text Solution

3. $\lim_{x o -\infty} rac{x^4 \cdot \sin\left(rac{1}{x}
ight) + x^2}{1 + \left|x
ight|^3}$ is equal to

- A. 0
- B. 1

- C. 2
- D. 1

View Text Solution

- **4.** $\lim_{x \to 1} \frac{x^m 1}{x^n 1}$ is equal to
 - A. $\frac{n}{m}$
 - $\mathsf{B.}\;\frac{m}{n}$
 - $\mathsf{C.}\,\frac{2m}{n}$
 - D. $\frac{2n}{m}$

Watch Video Solution

5. If f(x) =
$$=$$
 $\left[an \left(rac{\pi}{4} + x
ight)
ight]^{1/x}$ $x
eq 0$ $x = 0$

For what value of k f(x) is continuous at x=0?

A. 1

B. 0

C. e

D. e^2

Answer: D

6. The value of
$$\lim_{x o 0} \left(\frac{1+5x^2}{1+3x^2} \right)^{\frac{1}{x^2}}$$
 is

A.
$$e^2$$

D.
$$1/e^2$$

Answer: A

Answer: D

Watch Video Solution

8. If $f(x) = \left(\frac{3x + \tan^2 x}{x}\right)$ is continuous at x = 0, then f(0) is equal to.

C. 4

D. 0

Answer: A

Watch Video Solution

9. If $f(x)=rac{\log(1+ax)-\log(1-bx)}{x}$ for x
eq 0 and f(0)=k and f(x) is continuous at x = 0 then k is equal to

A. a+b

B. a-b

C. a

D.b

Answer: A

Watch Video Solution

$\sin x$ **10.** lim \boldsymbol{x} $x \rightarrow 0$

A. 2

B. - 1

C. 1

D. 0

Answer: C

11.
$$\lim_{x \to 0} \frac{\cos(\sin x) - 1}{x^2}$$

A. 1

B. - 1

C.1/2

 $\mathsf{D.}-1/2$

Answer: D

12. In order that the function $f(x) = (x+1)^{\frac{1}{x}}$ is continuous at x = 0, f(0) must be defined as

A.
$$f(0) = 0$$

B.
$$f(0) = e$$

C.
$$f(0) = 1/e$$

D.
$$f(0) = 1$$

Answer: B

Watch Video Solution

13. The function f(x) = |x| at x = 0 is

- A. continuous but non-differentiable
- B. discontinuous and differentiable
- C. discontinuous and non-differentiable
- D. continuous and differentiable

Answer: C

- **14.** $\lim_{x\to 0} (\cos ecx)^{1/\log x}$ is equal to
 - A. 0
 - B. 1
 - C. 1/e

D. none of these

Answer: C

Watch Video Solution

15. The value of $\lim_{x o \infty} \left(rac{x+6}{x+1} ight)^{x+4}$, is

A. e

B. e^2

 $\mathsf{C.}\,e^4$

 ${\rm D.}\,e^5$

Answer: D

16. The set of points where the function f(x)=xert xert is differentiable is

A.
$$(-\infty,\infty)$$

B.
$$(-\infty,0)\cup(0,\infty)$$

$$\mathsf{C}.\left(o,\infty\right)$$

$$D. [0, \infty)$$

Answer: A

17.
$$\lim_{x \to 2} \frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2}$$
 is equal

A.
$$\frac{1}{8\sqrt{3}}$$

$$B. \frac{1}{\sqrt{3}}$$

$$c. 8\sqrt{3}$$

D.
$$\sqrt{3}$$

Answer: A

18.
$$\lim_{x \to 1} (1-x) an \left(\frac{\pi x}{2} \right)$$

4.
$$\frac{n}{2}$$

$$\operatorname{B.}\frac{2}{\pi}$$

$$\mathsf{C.}-\frac{\pi}{2}$$

$$\mathrm{D.}-\frac{2}{\pi}$$

19. If f:
$$R o R$$
 is defined by f(x) = [x -3] + | x-4| for x

$$\in R$$
 then $\lim_{x o 3^-}$ f(x) is equal to

$$A.-2$$

$$B.-1$$

Answer: C

View Text Solution

20. If $\mathsf{f} : \mathsf{R} \to R$ is defined by

$$f(x) = \left\{ egin{array}{ll} rac{\cos 3x - \cos x}{x^2} & {
m for} x
eq 0 \ \lambda & {
m for} x = 0 \end{array}
ight.$$

and if f is continuous at x = 0, then λ is equal to

$$A. -2$$

Watch Video Solution

21. If f (2) = 4 and
$$f^{\,,}(2)=1$$
 then $\lim_{x
ightarrow2}rac{xf(2)-2f(x)}{x-2}$

is equal to

$$A.-2$$

B. 1

C. 2

D. 3

Answer: C

22. If
$$\lim_{x o \infty} \left[rac{x^3+1}{x^2+1} - (ax+b)
ight]$$
 =2 then

- A. a = 1 and b = 1
- B. a=1 and b=-1
- C. a=1 and b=-2
- D. a=1 and b=2

Answer: C

23. If f(x) =
$$\begin{cases} \frac{1-\cos x}{x} & x \neq 0 \\ x & x = 0 \end{cases}$$
 is continuous at x =0 then

the value of k is

A. 0

 $\mathsf{B.}\;\frac{1}{2}$

 $\mathsf{C.}\,\frac{1}{4}$

 $\mathsf{D.}-\frac{1}{2}$

Answer: A

A.
$$1/2$$

B.
$$-1/2$$

Answer: A

Watch Video Solution

25. If f(x) =
$$\begin{cases} \frac{\sin 5x}{x^2 + 2x} & x \neq 0 \\ k + \frac{1}{2} & x = 0 \end{cases}$$
 is continuous at x =0 then

the value of k is

A. 1

$$B.-2$$

C. 2

D. $\frac{1}{2}$

Answer: C

Watch Video Solution

26. The value of the constant α and β such that

$$\lim_{x o\infty} \ \left(rac{x^2+1}{x+1}-lpha x-eta
ight)$$
 =0 are respectively

A. (1,1)

B. (-1, 1)

C. (1, -1)

D. (0,1)

Answer: C

Watch Video Solution

27.
$$\lim_{ heta o\infty} \ rac{4 heta(an heta-2 heta an heta)}{(1-\cos2 heta)}$$
 is equal to

A.
$$1\sqrt{2}$$

B.
$$1/2$$

Answer: D

28. Let
$$f(x)=egin{cases} 1&orall &x<0\ 1+\sin x&orall &0\leq x\leq\pi/2 \end{cases}$$
 then what is the value of $f'(x)$ at $x=0$?

$$B. - 1$$

$$\mathsf{C}.\,\infty$$

D. Does not exist

Answer: D

