MATHS

BOOKS - BITSAT GUIDE

QUADRATIC EQUATION

Practice Exercise

1. If
$$x=\sqrt{1+\sqrt{1+\sqrt{1+...,}}}$$
 then x is equals

A.
$$\frac{1+\sqrt{5}}{2}$$

$$\mathsf{B.}\;\frac{2+\sqrt{5}}{2}$$

$$\operatorname{c.}\frac{-1+\sqrt{5}}{2}$$

D.
$$\frac{-1-\sqrt{5}}{2}$$

Answer: A

Watch Video Solution

2. If a+b+c=0, then the roots of the equation

$$4ax^2+3bx+2c=0, ext{ where } a,b,c\in R, ext{ are }$$

A. real and distinct

B. imaginary

C. real and equal

D. infinite

Answer: A

View Text Solution

3. If the roots of the quadratic equation $x^2-4x-\log_3 a=0$ are real, then the least value of a is

A. 81

B.
$$\frac{1}{81}$$

c.
$$\frac{1}{64}$$

D. None

Answer: B

Watch Video Solution

4. If $lpha,\,eta$ are the roots of $ax^2+bx+c=0$ and $lpha+h,\,eta+h$ are the roots of $px^2+qx+r=0$, then h =

A.
$$\left(\frac{b}{a} - \frac{q}{p}\right)$$

B.
$$rac{1}{2}igg(rac{b}{a}-rac{q}{p}igg)$$
C. $-rac{1}{2}igg(rac{a}{b}-rac{p}{q}igg)$

D. None

Answer: B

Watch Video Solution

equal roots, then p =

5. If the equation $(3x)^2+\left(27 imes 3^{1/p}-15
ight)x+4=0$ has

A. zero

B. 2

 $C. - \frac{1}{2}$

D. None

Answer: C

Watch Video Solution

6. If the equation

 $x^2 + ax + 12 = 0, x^2 + bx + 15 = 9$ and $x^2 + (a+b)x + 36 = 0$

have a common positive root, then the ordered pari (a,b) is

- A. (-6, -7)
- B. (-7, -8)
- C. (-6, -8)
- D. (-8, -7)

Answer: B

View Text Solution

7. The condition that $x^3-px-r=0$ may two of its roots equal to each other but of opposite sign, is

A.
$$r = pq$$

$$\mathsf{B.}\, r = 2p^3 + pq$$

$$\mathsf{C}.\, r = p^2 q$$

D. None of these

Answer: A

View Text Solution

8. The number of values of k for which the equation $x^2-3x+k=0$ has two distinct roots lying in the interval (0,1) is

- A. three
- B. two
- C. infinite
- D. no value of k will satisfy

Answer: D

- **9.** If $x^2+2bx-3x=0$ has no real root and $\dfrac{3x}{4} < a+b, ext{ then}$ the rage of c is
 - A. (-1, 1)
 - B.(0,1)
 - $C.(0,\infty)$
 - D. $(-\infty,0)$

Answer: D

View Text Solution

10. If the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots is

A.
$$-2ig(p^2+q^2ig)$$

$$\mathsf{B.} - \left(p^2 + q^2\right)$$

C.
$$rac{-\left(p^2+q^2
ight)}{2}$$

$$D. -pq$$

Answer: C

View Text Solution

11. The harmonic mean of the roots of the equation

$$ig(5+\sqrt{2}ig)x^2-ig(4+\sqrt{5}ig)x+8+2\sqrt{5}=0$$
 is 2 b. 4 c. 6 d. 8

- A. 2
- B. 4
- C. 7
- D. 8

Answer: B

Watch Video Solution

12. The roots of the equation $\left|x^2-x-6\right|=x+2$ are

- A. -2, 1, 4
- B.0, 2, 4

C. 0, 1, 4

D. -2, 2, 4

Answer: D

Watch Video Solution

13. In ΔPQR , $R=\frac{\pi}{2}$. If $an \frac{P}{2}$ and $an \frac{Q}{2}$ are the roots of the equation $ax^2+bx+c=0$, then

A.
$$a = b + c$$

$$\mathsf{B}.\,b=c+a$$

$$\mathsf{C}.\,c=a+b$$

$$\mathsf{D}.\,b=c$$

Answer: C

14. If the roots of the equation
$$(a+1)x^2-3ax+4a=0a
equation = -1$$
 are greater than unity,

then the values of a are

A.
$$\left[-\frac{16}{7}, -1\right]$$

B. [0, -1]

$$\mathsf{C.}\left[\,-\,\frac{16}{7},1\right]$$

D. [0, 1]

Answer: A

View Text Solution

15. The number of real roots of equation
$$(x-1)^2+(x-2)^2+(x-3)^2=0$$
 is

16. If $y=3^{x-1}+3^{-x-1}$ (where, x is real), then the leastvalue of

A. 2

B. 1

C. 0

D. 3

Answer: C

Watch Video Solution

A. 2

y is

- B. 6
- C.2/3
- D. None

Answer: C

Watch Video Solution

17. If the equation $x^2-(2+m)x+(m2-4m+4)=0$ has coincident roots, then

- A. m = 0, m = 1
- B. m = 0, m = 2
- C. $m = \frac{2}{3}, m = 6$
- D. $m = \frac{2}{3}, m = 1$

Answer: C

Watch Video Solution

18. If α,β are the roots of $x^2+x+2=0$ and γ,δ are the roots of $x^2+3x+4=0$. then $(\alpha+\gamma)(\alpha+\delta)(\beta+\gamma)(\beta+\delta)$ is equal to

- A. 18
- B. 18
- C. 24
- D. 44

Answer: D

19. If $a^2+b^2+c^2=1$ then ab+bc+ca lies in the interval

A.
$$[1, 2]$$

$$B. \left[0, \frac{1}{2}\right]$$

$$\mathsf{C.}\left[\,-\,\frac{1}{2},1\right]$$

D. [0, 1]

Answer: C

Watch Video Solution

20. If $x^2-5x+1=0$, then $x^5+\dfrac{1}{x^5}$ is equal to

A. 2424

B. 3232

C. 2525

D. None

Answer: C

Watch Video Solution

21. The range of the value of k for which the number 3 lies between the roots of the equation $x^2+(1-2k)x+\left(k^2-k-2\right)=0$ is given by

A.
$$k < 2$$

$$\mathrm{B.}\,2 < k < 5$$

$$\mathsf{C.}\, 2 < k < 3$$

Answer: B

Match Video Colution

22. if α, β, γ are the roots of the equation $x^3 - x - 1 = 0$ then

$$rac{1+lpha}{1-lpha}+rac{1+eta}{1-eta}+rac{1+\gamma}{1-\gamma}$$
 is

A. 0

B. - 1

 $\mathsf{C.}-7$

D. 1

Answer: C

Watch Video Solution

23. If one root of the equation $x^2-\lambda x+12=0$ is even prime while $x^2+\lambda x+\mu=0$ has equal roots, then μ is

- A. 8
- B. 16
- C. 24
- D. 32

Answer: B

Watch Video Solution

then $\left(1+lpha+lpha^2
ight)\left(1+eta+eta^2
ight)$ is equal to

24. If α and β are the roots of the equation $ax^2 + bx + c = 0$,

- A. 0
- B. positive
- C. negative
- D. None

Answer: B

View Text Solution

25. The number of real solutions of the equation

$$\left(5+2\sqrt{6}
ight)^{x^{2-3}+\left(5-2\sqrt{6}
ight)^{x^2-3}}=10$$
 is-

- A. 2
- B. 4
- C. 6
- D. None

Answer: B

26. If b>a, then the equation (x-a)(x-b)-1=0, has

A. both roots in [a,b]

B. both roots in $(-\infty,a)$

C. one root in (b,∞) and other in $(b,-\infty)$

D. one root in $(-\infty,a)$

Answer: D

27. If α and $\beta(\alpha<\beta)$ are the roots of the equation

A.
$$0<\alpha$$

B. lpha < 0 < eta < |lpha|

 $a^2 + bx + c = 0$, where c < 0 < b, then

C.
$$\alpha < \beta < 0$$

D.
$$lpha < 0 < |lpha| < eta$$

Answer: B

Watch Video Solution

- **28.** If the roots of the equation $lx^2 + mx + | m = 0$ are in
- ratio a:b then the value of $\sqrt{rac{a}{b}} + \sqrt{rac{b}{a}} + \sqrt{rac{m}{l}}$ is equal to
 - A. 0

B. 1

- C. 3
- D. None

Answer: A

29. For the equation $3x^2+px+3=0, p>0$, if one of the root is square of the other, then p is equal to 1/3 b. 1 c. 3 d. 2/3

A.
$$\frac{1}{2}$$

B. 1

C. 3

D. $\frac{2}{3}$

Answer: C

Watch Video Solution

30. Q. If $x^2+5=2x-4\cos(a+b)$, where $a,b\in(0,5)$ is satisfied for at least one real x, then the maximum value of

$$a+b\in [0,2\pi]$$
 is

A. 3π

B. 2π

 $\mathsf{C}.\,\pi$

D. None of these

Answer: C

31. If a,b,c
$$\in R$$
 and $ax^2+bx+c=0$ has no real roots, then

A.
$$a(a+b+c)>0$$

$$\mathtt{B.}\,c-c(a-b-c)>0$$

$$\mathsf{C.}\, c + c(a-b-c) > 0$$

D.
$$c(a - b - c) > 0$$

Answer: A

Watch Video Solution

32. The value of p for which the difference between the roots of the equation $x^2+px+8=0$ is 2, are

A.
$$\pm 3$$

$${\tt B.\pm6}$$

$$\mathsf{C}.\pm 2$$

$${\rm D.}\pm 1$$

Answer: B

33. If $lpha \ ext{and} \ eta$ are the roots of the equation $ax^2+bx+c=0,$

then the quadratic equation whose roots are $\frac{\alpha}{1+\alpha} \ \mbox{and} \ \frac{\beta}{1+\beta}, \mbox{is}$

A.
$$ax^2 - b(1-x) + c(1-x)^2 = 0$$

$$\mathsf{B}.\,ax^2 - b(x-1) + c(x-1)^2 = 0$$

C.
$$ax^2 + b(1-x) + c(1-x)^2 = 0$$

D.
$$ax^2 + b(x+1) + c(1+x)^2 = 0$$

Answer: C

View Text Solution

34. If $a+b+c>rac{9c}{4}$ and quadratic equation $ax^2+2bx-5c=0$ has non-real roots, then-

A.
$$a > 0, c > 0$$

B.
$$a > 0, c < 0$$

C.
$$a < 0, c < 0$$

D.
$$a<0,c>0$$

Answer: B

35. For real values of x, the expression
$$\frac{(x-b)(x-c)}{(x-a)}$$
 will assume all real values provided

A.
$$a \leq c \leq b$$

B.
$$a \geq a \geq c$$

$$\mathsf{C}.\,b \leq c \leq a$$

D.
$$a \geq b \geq c$$

Answer: B

View Text Solution

Bitset Archives

1. If α and β are the roots of the equation $x^2-px+q=0$ then the value of $(\alpha+\beta)x-\Big(\dfrac{\alpha^2+\beta^2}{2}\Big)x^2+\Big(\dfrac{\alpha^3+\beta^3}{3}\Big)x^3+...$

is

A.
$$\log(1-px+qx^2)$$

$$\mathsf{B.}\log\bigl(1+px-qx^2\bigr)$$

C.
$$\log(1+px+qx^2)$$

D. None of these

Answer: A

2. 3 The set of all real x satisfying the inequality
$$\frac{3-|x|}{4-|x|} \geq 0$$

A.
$$[\,-3,3]\cup(\,-\infty,\,-4)\cup(4,\infty)$$

B.
$$(-\infty, -4) \cup (4, \infty)$$

$$\mathsf{C}.\,(\,-\infty,\,-3)\cup(4,\infty)$$

D.
$$(-\infty, -3) \cup (3, \infty)$$

Answer: A

Watch Video Solution

3. If N is any four digit number say x_1, x_2, x_2, x_4 then the maximum of $\frac{N}{x_1+x_2+x_3+x_4}$ is equal to

B.
$$\frac{1111}{4}$$

C. 800

D. None

Answer: D

View Text Solution

4. If 4 - 5i is a root of the quadratic equation $x^2+ax+b=0$

- then (a, b) is equal
 - A. (8, 41)
 - B. (-8, 41)
 - C. (41, 8)
 - D. (-41, 8)

Watch Video Solution

5. If α and β are the roots of the quadratic equation

$$4x^2+3x+7=0$$
 then the value of $\dfrac{1}{lpha}+\dfrac{1}{eta}$ is

$$\mathsf{A.}-\frac{3}{4}$$

$$\mathrm{B.}-\frac{3}{7}$$

$$\mathsf{C.}\ \frac{3}{7}$$

D.
$$\frac{4}{7}$$

Answer: B

6. If $lpha,\,eta$ are the roots of $ax^2+bx+c=0$ and $lpha+k,\,eta+k$ are the roots of $px^2+qx+r=0,\,$ then $rac{b^2-4ac}{q^2-4pr}$ is equal to

A.
$$\frac{a}{p}$$

B. 1

$$\mathsf{C.}\left(\frac{a}{p}\right)^2$$

D. 0

Answer: C

View Text Solution

7. If lpha and eta are the roots of the equation $x^2-2x+4=0,$

A. $i2\sin^{n+1}\sin(n\pi/3)$

then the value of $\alpha^n + \beta^n$ will be

B.
$$2^{n+1}\cos(n\pi/3)$$

C.
$$i2^{n-1}\sin(n\pi/3)$$

D.
$$2^{n-1}\cos(n\pi/3)$$

Answer: B

View Text Solution

8. If the roots of the equation $ax^2+bx+c=0$ are real and distinct, then

A. both roots are greater than
$$-\frac{b}{2a}$$

B. both roots are greater than
$$-\frac{b}{2a}$$

C. one of the roots exceeds –
$$\frac{b}{2a}$$

D. None of the above

Answer: C

Watch Video Solution

- **9.** The number of jsolutions of the equation $z^2+ar{z}=0,\,$ is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

$$A. - 2/3$$

- B.-3
- C. 4
- D.-1/2

Answer: D

View Text Solution

11. If $\alpha+\beta=-2$ and $\alpha^3+\beta^3=-56$ then the quadratic equation whose roots are α,β is.

A.
$$x^2 + 2x - 16 = 0$$

B.
$$x^2 + 2x + 15 = 0$$

C.
$$x^2 + 2x - 12 = 0$$

D.
$$x^2 + 2x - 8 = 0$$

Answer: D

Watch Video Solution

12. The cubic equation whose roots are thrice to each of the roots of $x^3+2x^2-4x+1=0$ is

A.
$$x^3 - 6x^2 + 36x + 27 = 0$$

$$B. x^3 + 6x^2 + 36x + 27 = 0$$

C.
$$x^3 - 6x^2 - 36x + 27 = 0$$

$$\mathrm{D.}\,x^3+6x^2-36x+27=0$$

Answer: D

13. The number of solutions of the equation

 $1+\sin x\sin^2rac{x}{2}=0$ in $[-\pi,\pi]$ is

A. 0

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

14. If one root of the quadratic equation $ax^2+bx+c=0$ is equal to nth power of the other root, then the value of $(ac^n)^{\frac{1}{n+1}}+(a^nc)^{\frac{1}{n+1}}$ is equal to

$$\mathsf{B.}-b$$

C.
$$\frac{1}{b^{n+1}}$$

$$\mathsf{D.}-b^{n+1}$$

Answer: B

View Text Solution

15. If
$$\alpha, \beta, \gamma$$
 are the roots of the equation

$$2x^3-3x^2+6x+1=0, ext{ then } lpha^2+eta^2+\gamma^2 ext{ is equal to}$$

$$\mathsf{A.} - \frac{15}{4}$$

B.
$$\frac{15}{4}$$

$$\mathsf{C.}\ \frac{9}{4}$$

D.4

Answer: A

Watch Video Solution

16. If $\sin lpha, \sin eta$ and $\cos lpha$ are in GP, then roots of $x^2 + 2x \cot eta + 1 = 0$ are always

A. real

B. imaginary

C. greater than 1

D. equal

Answer: A

