©゙" doubtnut

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2013

Mathematics

1. The value of $\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$ is
A. -1
B. 0
C. $-i$
D. i

Answer: D
2. The mean life of a sample of 60 bulbs was 650 and the standard deviation was 8 h . A second sample of 80 bulbs has a mean life of 660 h and standard deviation 7 h . Find the over all standard deviation.
A. 8.97
B. 8.98
C. 8.94
D. None of the above

Answer: C

- Watch Video Solution

3. Let R be the relation on the set R of all real numbers, defined by $a \rightarrow b$ if $|a-b| \leq 1$. Then, R is
A. Reflexive and symmetric only
B. Reflexive and transitive only
C. Equivalence
D. None of the above

Answer: A

- Watch Video Solution

4. $\int_{1}^{10 \pi}\left(\left[\sec ^{-1} x\right]+\left[\cot ^{-1} x\right]\right) d x$, where [.] denotes the greatest integer function, is equal to:
A. $10 \pi-\tan ^{-1} x$
B. $8 \pi-\sec 1$
C. $10 \pi-\sec 1$
D. $10 \pi+\sec 1$
5. The value of the expression $\sin \left[\cot ^{-1}\left(\cos \left(\tan ^{-1} 1\right)\right)\right]$ is
A. 0
B. 1
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{\frac{2}{3}}$

Answer: D

(D) Watch Video Solution

6. Sum of the series $1+2.2+3.2^{2}+4.2^{3}+\ldots+100.2^{99}$ is
A. $100 \cdot 2^{100}+1$
B. $99 \cdot 2^{100}+1$
C. $99 \cdot 2^{99}-1$
D. $100 \cdot 2^{100}$
-1

Answer: B

- Watch Video Solution

7. The shaded region given below represents the constraints (other than
$x \geq 0, y \geq 0$)

A. $3 x+4 y \leq 400, y \leq 25, x \leq 4 y$
B. $3 x+12 y \geq 400, y \leq 25, x \geq 4 y$
C. $3 x+12 y \leq 400, y \leq 25, x \geq 4 y$
D. None of the above

Answer: C

- Watch Video Solution

8. The coefficient of x^{n} in the expansion of $\log _{e}\left(\frac{1}{1+x+x^{2}+x^{3}}\right)$, when n is odd is
A. $-\frac{2}{n}$
B. $-\frac{1}{n}$
C. $\frac{1}{n}$
D. None of these

Answer: B

- Watch Video Solution

9. The maximum value of $f(x)=\frac{\log x}{x}(x \neq 0, x \neq 1)$ is
A. 1
B. $\frac{2}{e}$
C.e
D. $\frac{1}{e}$

Answer: D

- Watch Video Solution

10. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and
$(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$
If θ is the acute angle between the vectors \vec{b} and \vec{c} then $\sin \theta$ equals
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

11. $\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{1 / x^{2}}=$
A. e^{2}
B. e
C. $\frac{1}{e}$
D. $\frac{1}{e^{2}}$

Answer: A

- Watch Video Solution

12. An object is observed from the points A, B and C lying in a horizontal straight line which passes directly underneath the object. The angular elevation at B is twice that at A and at C three times that at A. If $A B=a$, $B C=b$, then the height of the object is
A. $\frac{3 a}{2 b} \sqrt{(a+b)(3 b-a)}$
B. $\frac{3 b}{2 a} \sqrt{(a+b)(3 a-b)}$
C. $\frac{a}{2 b} \sqrt{(a+b)(3 b-a)}$
D. None of the above

Answer: C

- Watch Video Solution

13. The function $f:(-\infty,-1) \rightarrow\left(0, e^{5}\right]$ defined by $f(x)=e^{x^{3-3 x+2}}$ is
A. many-one and onto
B. many-one and into
C. one-one and onto
D. one-one and into

Answer: D

- Watch Video Solution

14. The foci of the conic $25 x^{2}+16 y^{2}-150 x=175$ are :
A. $(0, \pm 3)$
B. $(0, \pm 2)$
C. $(3, \pm 3)$
D. $(0, \pm 1)$

Answer: C

15. The system of equations $x-y+3 z=4, x+z=2 x+y-z=0$ has
A. A unique solution
B. Finitely many solution
C. Infinitely many solutions
D. None of the above

Answer: C

- Watch Video Solution

16. The sum of the sequence upto $5,55,555, \ldots$ upto n infinite terms is
A. $\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)+n}{9}\right]$
B. $\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
C. $\frac{5}{9}\left[\frac{10\left(10^{n \pm 1}-1\right)}{9}-n\right]$
D. $\frac{5}{9}\left[\frac{10\left(10^{n-1}-1\right)}{9}-n\right]$

Answer: B

- Watch Video Solution

17. A plane passes through the point $(1,-2,3)$ and is parallel to the plane
$2 x-2 y+z=0$. The distance of the point ($-1,2,0$) from the plane, is
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

18. Distance between the pair of lines represented by the equation $x^{2}-6 x y+9 y^{2}+3 x-9 y-4=0$, is
A. $\frac{15}{\sqrt{10}}$
B. $\frac{1}{2}$
C. $\sqrt{\frac{5}{2}}$
D. $\frac{1}{\sqrt{10}}$

Answer: C

- Watch Video Solution

19. If $A=\left\{x \in \mathbb{C}: x^{4}-1=0\right\}$
$B=\left\{x \in \mathbb{C}: x^{2}-1=0\right\}$
$C=\left\{x \in \mathbb{C}: x^{2}+1=0\right\}$
Where \mathbb{C} is complex plane.
A. $A=B \cup C$
B. $C=A \cap B$
C. $B=A \cap C$
D. $A=B \cap C$

Answer: A

- Watch Video Solution

20. The general solution of the differential equation $\frac{d y}{d x}+\frac{\sin (x+y)}{2}=\frac{\sin (x-y)}{2}$ is
(b) (c) $\log \tan \left((d)(e)(f) \frac{y}{g} 2(h)(i)(j)\right)=c-2 \sin x(k) \quad$ (I) (m) [Math Processing Error] (ee) (ff) [Math Processing Error] (uu) (vv) $(w w)(\times) \log \tan \left((y y)(z z)(a a a) \frac{y}{b b b} 4(c c c)(d d d)+(e e e) \frac{\pi}{f f f} 4(g g g)(h h h)\right.$ (rrr)
A. $\log \tan \left(\frac{y}{2}\right)=C-2 \sin x$
B. $\log \tan \left(\frac{y}{4}\right)=C-2 \sin \left(\frac{x}{2}\right)$
C. $\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=C-2 \sin x$
D. None of the above

Answer: B

D Watch Video Solution

21. The set of all real x satisfying the inequality $\frac{3-|x|}{4-|x|} \geq 0$
A. $[-3,3] \cup(-\infty,-4) \cup(4, \infty)$
B. $(-\infty,-4) \cup(4, \infty)$
C. $(-\infty,-3) \cup(4, \infty)$
D. $(-\infty,-3) \cup(3, \infty)$

Answer: A

- Watch Video Solution

22. If N is any four digit number say $x_{1}, x_{2}, x_{3}, x_{4}$, then the maximum value ofis equal to $\frac{N}{x_{1}+x_{2}+x_{3}+x_{4}}$ is equal to
A. 1000
B. $\frac{1111}{4}$
C. 800
D. None of these

Answer: A

- Watch Video Solution

23. If A and B are two events such that $P(A)=0.6, P(B)=0.2$ and $P\left(\frac{A}{B}\right)=0.5$, then $P\left(\frac{A^{\prime}}{B^{\prime}}\right)$ equal to
A. $\frac{1}{10}$
B. $\frac{3}{10}$
C. $\frac{3}{8}$
D. $\frac{6}{7}$

Answer: C

- Watch Video Solution

24. What is quartile deviation for the datsa

$$
\begin{array}{cccccc}
x & 2 & 3 & 4 & 5 & 6 \\
f & 3 & 4 & 8 & 4 & 1
\end{array}
$$

A. 0
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: D

- Watch Video Solution

25. If $\int f(x) \cos x d x=\frac{1}{2} f^{2}(x)+C$, then $f(x)$ can be
A. x
B. 1
C. $\cos x$
D. $\sin x$

Answer: D

- Watch Video Solution

26. There are 10 points in a plane, out of which 6 are collinear. If N is the number of triangles formed by joining these points, then :
A. $n \leq 100$
B. $100<n<140$
C. $140<n \leq 190$
D. $n>190$

Answer: A

27. Find the value of

$$
\frac{{ }^{8} C_{0}}{6}-{ }^{8} C_{1}+{ }^{8} C_{2} \times 6-{ }^{8} C_{3} \times 6^{2}+\ldots \ldots+{ }^{8} C_{8} 6^{7}
$$

A. 0
B. 6^{7}
C. 6^{8}
D. $\frac{5^{8}}{6}$

Answer: D

- Watch Video Solution

28. A committee of 4 students is selected at random from a grourp consisting of 8 boys and 4 girls. Given that there is at least one girl in the committee, calculate the probability that there are exactly 2 girls in the committee.
A. $\frac{68}{125}$
B. $\frac{56}{165}$
C. $\frac{63}{625}$
D. $\frac{168}{425}$

Answer: D

- Watch Video Solution

29. What are the values of c for which Rolle's theorem for the function $f(x)=x^{3}-3 x^{2}+2 x$ in the interval $[0,2]$ is verified?
A. $c= \pm 1$
B. $c+1 \pm \frac{1}{\sqrt{3}}$
C. $c= \pm 2$
D. None of these
30. If $\int \frac{4}{\sin ^{4} x+\cos ^{4} x} d x=a \tan ^{-1}\left(\frac{\tan x-\frac{1}{\tan x}}{b}\right)+C$, then find the value of a and b, respectively.
A. $2 \sqrt{2}, \sqrt{2}$
B. $\sqrt{2}, 2$
C. $\sqrt{3}, \sqrt{2}$
D. $\sqrt{2}, 4$

Answer: A

- Watch Video Solution

31. If $A=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$, then A is
A. idempotent
B. nilpotent
C. involutory
D. periodic

Answer: C

- Watch Video Solution

32. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre $(0,3)$ is
A. 4
B. $\frac{3}{7}$
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A

33. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then cos α equals $\frac{1}{\sqrt{3}} \frac{1}{2} 1 \frac{1}{\sqrt{2}}$
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: D

- Watch Video Solution

34. If $O A B$ is an equilateral triangle inscribed in the parabola $y^{2}=4 a x$ with O as the vertex, then the length of the side of the $\triangle O A B$ is
A. $8 a \sqrt{3}$
B. $4 a \sqrt{3}$
C. $2 a \sqrt{3}$
D. $a \sqrt{3}$

Answer: A

- Watch Video Solution

35. If $f(x+y)=f(x) f(y)$ for all x, y and
$f(0) \neq 0$, and $F(x)=\frac{f(x)}{1+(f(x))^{2}}$ then:
A. even function
B. odd function
C. odd, if $f(x)>0$
D. neither even nor odd

Answer: A

36. If $f(x)=\left(\tan ^{-1} x\right)^{2}+\frac{2}{\sqrt{x^{2}+1}}$ then $\mathrm{f}(\mathrm{x})$ is increasing in
A. $(0, \infty)$
B. $(-\infty, 0)$
C. $(-\infty,-5)$
D. None of these

Answer: A

Watch Video Solution
37. Find the number of solutions of $\cos x=|1+\sin x|, 0 \leq x \leq 3 \pi$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

38. If $\mathrm{a}, \mathrm{b} \mathrm{c}$ are in GP and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
A. AP
B. GP
C. HP
D. None of these

Answer: A

- Watch Video Solution

39. The angle between the lines whose directionn cosines are given by $2 l-m+2 n=0, l m+m n+n l=0$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

40. The equation of the lines through ($(1,1)$ and making angles of 45° with the line $x+y=0$ are
A. $x-1=0, x-y=0$
B. $x-y=0, y-1=0$
C. $x+y-2=0, y-1=0$
D. $x-1=0, y-1=0$

Answer: D

- Watch Video Solution

41. Determine the area of the figure bounded by two branches of the curve $(y-x)^{2}=x^{3}$ and the straight line $x=1$.
A. $\frac{4}{5}$ sq unit
B. $\frac{4}{7}$ sq unit
C. $\frac{4}{9}$ sq unit
D. $\frac{4}{11}$ sq unit

Answer: A

- Watch Video Solution

42. If $(x+i y)^{1 / 3}=2+3 i$, then $3 x+2 y$ is equal to
A. -20
B. -60
C. -120
D. 60

Answer: C

- Watch Video Solution

43. In a town of 10,000 families it was found that 40% family buy newspaper A, 20\% buy newspaper B and 10\% families buy newspaper C, 5% families buy A and B, 3% buy Band Cand 4% buy A and C. If 2% families buy all the three newspapers, then number of families which buyA only is
A. 3100
B. 3300
C. 2900
D. 1400

Answer: B

- Watch Video Solution

44. If $|\vec{a}|=2|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, then $|\vec{a} \cdot \vec{b}|$ is equal to :
A. 3
B. 4
C. 5
D. 6

Answer: D

45. The equation of circle which passes through the origin and cuts off intercepts 5 and 6 from the positive parts of the x-axis and y-axis respectively is $\left(x-\frac{5}{2}\right)^{2}=(y-3)^{2}=\lambda$, where λ is
A. $\frac{61}{4}$
B. $\frac{4}{6}$
C. $\frac{1}{4}$
D. 0

Answer: A

