© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2015

Mathematics

1. $\lim _{x \rightarrow \infty} \frac{\int_{0}^{2 x} x e^{x^{2}}}{e^{4 x^{2}}}$ equals
A. 0
B. ∞
C. 2
D. $\frac{1}{2}$

D Watch Video Solution

2. If ω is the complex cube root of unity, then the value of
$\omega+\omega\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots \ldots \ldots.\right)$,
A. -1
B. 1
C. $-i$
D. i

Answer: A

3.

$2(1+i) x^{2}-4(2-i) x-5-3 i=0, \quad$ where $\quad i=\sqrt{-1}$,
which has greater modulus is
A. $\frac{3-5 i}{2}$
B. $\frac{5-3 i}{2}$
C. $\frac{3-i}{2}$
D. none

Answer: A

- Watch Video Solution

4. $\frac{3}{4}+\frac{15}{16}+\frac{63}{64}+\ldots \ldots \ldots . . n$ nerms
A. $n-\frac{4^{n}}{3}-\frac{1}{3}$
B. $n+\frac{4^{-n}}{3}-\frac{1}{3}$
C. $n+\frac{4^{n}}{3}-\frac{1}{3}$
D. $n-\frac{4^{-n}}{3}+\frac{1}{3}$

Answer: B

- Watch Video Solution

5. The period of $\tan 3 \theta$ is
A. π
B. $3 \pi / 4$
C. $\pi / 2$
D. None of these

D Watch Video Solution

$$
\begin{aligned}
& \text { 6. If a function } f(x) \text { is given by } \\
& f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\ldots \infty
\end{aligned}
$$ then at $x=0, f(x)$

A. has no limit
B. is not continuous
C. is continuous but not differentiable
D. is differentiable

Answer:

7. If g is inverse of function f and $f^{\prime}(x)=\sin x$, then $g^{\prime}(x)=$
A. $\operatorname{cosec}\{g(x)\}$
B. $\sin \{g(x)\}$
C. $\frac{1}{\sin \{g(x)\}}$
D. None of these

Answer: C

- Watch Video Solution

8. A bag contains $(2 n+1)$ coins. It is known that n of these coins have a head on both sides, whereas the remaining ($\mathrm{n}+$
1) coins are fair. A coin is picked up at random from the bag
and tossed. If the probability that the toss results in a head is
$31 / 42$, then n is equal to
A. 10
B. 11
C. 12
D. 13

Answer: A

- Watch Video Solution

9. If $\phi(x)$ is a differentiable function, then the solution of the different equation $d y+\left\{y \phi^{\prime}(x)-\phi(x) \phi^{\prime}(x)\right\} d x=0$, is

$$
\text { A. } y=\{\phi(x)-1\}+C e^{-\phi(x)}
$$

B. $y \phi(x)=\{\phi(x)\}^{2}+C$
C. $y e^{\phi(x)}=\phi(x) e^{\phi(x)}+C$
D. $y-\phi(x)=\phi(x) e^{-\phi(x)}$

Answer: A

- Watch Video Solution

10.

The
area
of
the
region
$R=\left\{(x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ is
A. $\frac{3 \pi}{8}$ sq units
B. $\frac{5 \pi}{8}$ sq units
C. $\frac{\pi}{2}$ sq units
D. $\frac{\pi}{8}$ sq units

D Watch Video Solution

11. Universal set $U=\left\{x \mid x^{5}-6 x^{4}+11 x^{3}-6 x^{2}=0\right\}$
$A=\left\{x \mid x^{2}-5 x+6=0\right\} \quad B=\left\{x \mid x^{2}-3 x+2=0\right\}$
What is $(A \cap B)$ 'equal to?
A. $\{1,3\}$
B. $\{1,2,3\}$
C. $\{0,1,3\}$
D. $\{0,1,2,3\}$

Answer: C

12. If $\cot ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$, then $4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to :
A. $2 \sin 2 \alpha$
B. 4
C. $4 \sin ^{2} \alpha$
D. $-4 \sin ^{2} \alpha$

Answer: C

D Watch Video Solution

13. If $\frac{e^{x}+e^{5 x}}{e^{3 x}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$. then the value of $2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots \ldots$ is
A. $e^{2}+e^{-2}$
B. $e^{4}-e^{-4}$
C. $e^{4}+e^{-4}$
D. 0

Answer: D

- Watch Video Solution

14. Let a, b and c be three vectors satisfying $a \times b=(a \times c),|a|=|c|=1,|b|=4$ and $|b \times c|=\sqrt{15}$.

If $b-2 c=\lambda a$, then λ equals
A. 1
B. -1
C. 2
D. ± 4

Answer: D

- Watch Video Solution

15. The total number of 4 digit numbers in which the digit are in descending order, is
A. ${ }^{10} C_{4} \times 4$!
B. ${ }^{10} C_{4}$
C. $\frac{10!}{4!}$
D. None of these
16. The line, which is parallel to X-axis and crosses the curve $y=\sqrt{x}$ at an angle 45°, is
A. $x=\frac{1}{4}$
B. $y=\frac{1}{4}$
C. $y=\frac{1}{2}$
D. $y=1$

Answer: C

17. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be $5-\sqrt{6}$ (b) $3 \sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$
A. $5 \pm \sqrt{6}$
B. $3 \sqrt{3}$
C. 5
D. None of these

Answer: A

- Watch Video Solution

18. The mean of then Numbers $0,1,2,3$. .n with respective weights ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2} \ldots \ldots . .{ }^{n} C_{n}$ is
A. n
B. $\frac{2^{n}}{n}$
C. $n+1$
D. $\frac{n}{2}$

Answer: D

- Watch Video Solution

19. The mean square deviation of a set of n observation $x_{1}, x_{2}, \ldots . x_{n}$ about a point c is defined as $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-c\right)^{2}$.

The mean square deviations about - 2 and 2 are 18 and 10 respectively, the standard deviation of this set of observations is
A. 3
B. 2
C. 1
D. None of these

Answer: A

D Watch Video Solution

20. Let S be the focus of the parabola $y^{2}=8 x$ and let PQ be the common chord of the circle $x^{2}+y^{2}-2 x-4 y=0$ and the given parabola. The area of the triangle PQS is
A. 4 sq units
B. 3 sq units
C. 2 sq units
D. 8 sq units

Answer: A

- Watch Video Solution

21. The number of real root of the equation $e^{x-1}+x-2=0$, is
A. 1
B. 2
C. 3
D. 4
22. Minimise $Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j} \quad$ Subject to
$\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n \sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m$
is a $L P P$ with number of constraints
A. $m-n$
B. $m n$
C. $m+n$
D. $\frac{m}{n}$

Answer: C

- Watch Video Solution

23. A bag contains 3 red and 3 white balls. Two balls are drawn one by one. The probability that they are of different colours is.
A. $3 / 10$
B. $2 / 5$
C. $3 / 5$
D. None of these

Answer: C

- Watch Video Solution

24. If M be a 3×3 non-singular matrix with $\operatorname{det}(M)=\alpha$.If $M^{-1} \operatorname{adj}(\operatorname{adj} A)=K I$, then the value of K is
A. 1
B. α
C. α^{2}
D. α^{3}

Answer: B

D Watch Video Solution

25. Tangents are drawn from the origin to the curve $y=\cos X$. Their points of contact lie on
A. $x^{2} y^{2}=y^{2}-x^{2}$
B. $x^{2} y^{2}=x^{2}+y^{2}$
C. $x^{2} y^{2}=x^{2}-y^{2}$
D. None of these

Answer: C

D Watch Video Solution

26. The slope of the tangent to the curve $y=e^{x} \cos x$ is minimum at $x=a, 0 \leq a \leq 2 \pi$, then the value of a is
A. 0
B. π
C. 2π
D. $3 \pi / 2$
27. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$
$L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then, α can take value (s)
A. $1,4,5$
B. 1, 2, 5
C. $3,4,5$
D. $2,4,5$

Answer: A
(D) Watch Video Solution
28. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of ellipse is
A. $4 x^{2}+3 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $3 x^{2}+4 y^{2}=1$

Answer: B

- Watch Video Solution

29. The function $f(x)=\frac{x}{2}+\frac{2}{x}$ has a local minimum at $x=2$ (b) $x=-2 x=0$ (d) $x=1$
A. $x=2$
B. $x=-2$
C. $x=0$
D. $x=1$

Answer:

- Watch Video Solution

30. If $y=\left(x+\sqrt{1+x^{2}}\right)^{n}$ then $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$
A. $n^{2} y$
B. $-n^{2} y$
C. $-y$
D. $2 x^{2} y$

D Watch Video Solution

31. If $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)=A$ and $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=B$, then which one of the following is correct?
A. $A=1$ and $B=0$
B. $A=0$ and $B=1$
C. $A=0$ and $B=0$
D. $A=1$ and $B=1$

Answer: A

32. If a and $b(\neq 0)$ are the roots of the quadratic $x^{2}+a x+b=0$ then the least value of $x^{2}+a x+b(x \in R)$ is
A. $\frac{2}{3}$
B. $-\frac{9}{4}$
C. $\frac{9}{4}$
D. 1

Answer: B

- Watch Video Solution

33. If $0<x<\frac{\pi}{2}$ then
A. $\tan x<x<\sin x$
B. $x<\sin x<\tan x$
C. $\sin x<\tan x<x$
D. None of these

Answer: D

(D) Watch Video Solution

34. The degree of the differential equation satisfying
$\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, is
A. 1
B. 2
C. 3
D. 4

(D) Watch Video Solution

35. Let $f(x)$ be a polynomial of degree three
$f(0)=-1$ and $f(1)=0$. Also, 0 is a stationary point of
$f(x)$. If $\mathrm{f}(\mathrm{x})$ does not have an extremum at $x=0$, then the value of integral $\int \frac{f(x)}{x^{3}-1} d x$, is
A. $\frac{x^{2}}{2}+C$
B. $x+C$
C. $\frac{x^{3}}{6}+C$
D. None of these
36. The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$, is
A. $[1,2]$
B. $[2,3)$
C. $[1,2]$
D. $[2,3]$

Answer: B

- Watch Video Solution

37. If the lines $p_{1} x+q_{1} y=1+q_{2} y=1$ and $p_{3} x+q_{3} y=1$ be concurrent, show that the point
$\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$ are collinear.
A. are collinear
B. form an equilateral triangle
C. form a scalene triangle
D. form a right angled triangle

Answer: A

D Watch Video Solution

38. Area of the circle in which a chord of length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre,
A. $\pi / 2$ sq units
B. 2π sq units
C. π sq units
D. $\pi / 4$ sq units

Answer: C

D Watch Video Solution

39. If $\frac{\cos A}{\cos B}=n$ and $\frac{\sin A}{\sin B}=m$, then $\left(m^{2}-n^{2}\right) \sin ^{2} B=$
A. $1+n^{2}$
B. $1-n^{2}$
C. n^{2}
D. $-n^{2}$
40. If complex number Z_{1}, Z_{2} and 0 are vertices of equilateral triangle, then $Z_{1}^{2}+Z_{2}^{2}-Z_{1} Z_{2}$ is equal to
A. 0
B. $Z_{1}-Z_{2}$
C. $Z_{1}+Z_{2}$
D. 1

Answer: A

(D) Watch Video Solution

41. If $\rho=\left\{(x, y) \mid x^{2}+y^{2}=1, x, y \in A\right\}$.Then,$\rho$ is
A. reflexive
B. symmetric
C. transitive
D. anti-symmetric

Answer: B

- Watch Video Solution

42. A line line makes the same angle θ with each of the x and
z -axes. If the angle β, which it makes with y -axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$ then $\cos ^{2} \theta$ equals
A. $2 / 5$
B. $1 / 5$
C. $3 / 5$
D. $2 / 3$

Answer: C

- Watch Video Solution

43.

A. $\frac{1}{16}$
B. $\frac{1}{81}$
C. $\frac{1}{27}$
D. $\frac{1}{8}$

D Watch Video Solution

44. Let $f: R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y)$ for all, $x, y \in R$
If $f(x)$ is differentiable at $x=0$. then, which one of the following is incorrect?
A. $\mathrm{f}(\mathrm{x})$ is continuous, $\forall x \in R$
B. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant, $\forall x \in R$
C. $\mathrm{f}(\mathrm{x})$ is differentiable, $\forall x \in R$
D. $f(x)$ is differentiable only in a finite interval containing zero.

D Watch Video Solution

45. If binomial coeffients of three consecutive terms of
$(1+x)^{n}$ are in H.P., then the maximum value of n , is
A. 1
B. 2
C. 0
D. None of these

Answer:

