

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2015

1.
$$\lim_{x
ightarrow\infty} \ rac{\int_0^{2x} x e^{x^2}}{e^{4x^2}}$$
 equals

A. 0

 $B.\infty$

C. 2

D. $\frac{1}{2}$

Answer: D

Watch Video Solution

2. If ω is the complex cube root of unity, then the value of

$$\omega + \omega \left(\frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \frac{27}{128} + \dots \right),$$

 $\mathsf{A.}-1$

B. 1

 $\mathsf{C}.-i$

D. i

Answer: A

3.	The	root	of	the	equation
2(1+i	$)x^{2}-4(2$	(1-i)x-5	-3i=0,	where	$i=\sqrt{-1},$

which has greater modulus is

A.
$$\frac{3-5i}{2}$$

B. $\frac{5-3i}{2}$
C. $\frac{3-i}{2}$

D. none

Answer: A

Watch Video Solution

4.
$$rac{3}{4} + rac{15}{16} + rac{63}{64} +nterms$$

A. $n - rac{4^n}{3} - rac{1}{3}$

B.
$$n + \frac{4^{-n}}{3} - \frac{1}{3}$$

C. $n + \frac{4^n}{3} - \frac{1}{3}$
D. $n - \frac{4^{-n}}{3} + \frac{1}{3}$

Answer: B

5. The period of tan 3θ is

A. π

B. $3\pi/4$

 $\mathsf{C.}\,\pi\,/\,2$

D. None of these

Answer: D

6. If a function
$$f(x)$$
 is given by $f(x)=rac{x}{1+x}+rac{x}{(x+1)(2x+1)}+rac{x}{(2x+1)(3x+1)}+...\infty$ then at $x=0,\,f(x)$

A. has no limit

B. is not continuous

C. is continuous but not differentiable

D. is differentiable

Answer:

7. If g is inverse of function f and $f'(x) = \sin x$, then g'(x)=

A. cosec {g(x)}

B. sin $\{g(x)\}$

$$\mathsf{C}.\,\frac{1}{\sin\{g(x)\}}$$

D. None of these

Answer: C

8. A bag contains (2n + 1) coins. It is known that n of these coins have a head on both sides, whereas the remaining (n + 1) coins are fair. A coin is picked up at random from the bag

and tossed. If the probability that the toss results in a head is 31/42, then n is equal to

A. 10 B. 11 C. 12

D. 13

Answer: A

Watch Video Solution

9. If $\phi(x)$ is a differentiable function, then the solution of the different equation $dy + \{y\phi'(x) - \phi(x)\phi'(x)\}dx = 0$, is

A.
$$y = \{\phi(x) - 1\} + C e^{-\phi(x)}$$

B.
$$y\phi(x)=\left\{\phi(x)
ight\}^2+C$$

C.
$$ye^{\phi(x)} = \phi(x)e^{\phi(x)} + C$$

D.
$$y-\phi(x)=\phi(x)e^{-\phi(x)}$$

Answer: A

10. The area of the region
$$R = ig\{(x,y) \colon |x| \leq |y| ext{ and } x^2 + y^2 \leq 1ig\}$$
 is

A.
$$\frac{3\pi}{8}$$
 sq units
B. $\frac{5\pi}{8}$ sq units
C. $\frac{\pi}{2}$ sq units
D. $\frac{\pi}{8}$ sq units

Answer: C

Watch Video Solution

11. Universal set $U = \left\{ x \mid x^5 - 6x^4 + 11x^3 - 6x^2 = 0 \right\}$ $A = \left\{ x \mid x^2 - 5x + 6 = 0 \right\}$ $B = \left\{ x \mid x^2 - 3x + 2 = 0 \right\}$ What is $(A \cap B)$ 'equal to?

A. {1, 3}

B. {1, 2, 3}

C. {0, 1, 3}

D. {0, 1, 2, 3}

Answer: C

12. If $\cot^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$, then $4x^2 - 4xy\cos\alpha + y^2$ is equal to :

A. $2\sin 2lpha$

B. 4

 $\mathsf{C.}\,4\sin^2\alpha$

D. $-4\sin^2 lpha$

Answer: C

13. If
$$\frac{e^x+e^{5x}}{e^{3x}}=a_0+a_1x+a_2x^2+a_3x^3+\dots$$
 then the value of $2a_1+2^3a_3+2^5a_5+\dots$ is

A. $e^2 + e^{-2}$ B. $e^4 - e^{-4}$ C. $e^4 + e^{-4}$ D. 0

Answer: D

14. Let a, b and c be three vectors satisfying
$$a \times b = (a \times c), |a| = |c| = 1, |b| = 4$$
 and $|b \times c| = \sqrt{15}$.
If $b - 2c = \lambda a$, then λ equals

A. 1

 $\mathsf{B.}-1$

C. 2

 $\mathsf{D.}\pm 4$

Answer: D

Watch Video Solution

15. The total number of 4 digit numbers in which the digit are in descending order, is

A.
$${}^{10}C_4 imes 4!$$

B. ${}^{10}C_4$

C.
$$\frac{10!}{4!}$$

D. None of these

Answer: B

16. The line, which is parallel to X-axis and crosses the curve $y=\sqrt{x}$ at an angle $45^{\,\circ}$, is

A.
$$x=rac{1}{4}$$

B. $y=rac{1}{4}$
C. $y=rac{1}{2}$
D. $y=1$

Answer: C

17. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be $5 - \sqrt{6}$ (b) $3\sqrt{3}$ (c) 5 (d) $5 + \sqrt{6}$

A. $5\pm\sqrt{6}$

B. $3\sqrt{3}$

C. 5

D. None of these

Answer: A

18. The mean of then Numbers 0,1,2,3.....n with respective weights ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$ ${}^{n}C_{n}$ is

A. n

B.
$$rac{2^n}{n}$$

C. $n+1$

D.
$$\frac{n}{2}$$

Answer: D

Watch Video Solution

19. The mean square deviation of a set of n observation x_1, x_2, \ldots, x_n about a point c is defined as $\frac{1}{n} \sum_{i=1}^n (x_i - c)^2$. The mean square deviations about – 2 and 2 are 18 and 10 respectively, the standard deviation of this set of observations is

A. 3

B. 2

C. 1

D. None of these

Answer: A

20. Let S be the focus of the parabola $y^2 = 8x$ and let PQ be the common chord of the circle $x^2 + y^2 - 2x - 4y = 0$ and the given parabola. The area of the triangle PQS is

A. 4 sq units

B. 3 sq units

C. 2 sq units

D. 8 sq units

Answer: A

, is

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

22. Minimise
$$Z = \sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} x_{ij}$$
 Subject to

$$\sum_{i=1} x_{ij} = b_j, j = 1, 2,, n \sum_{j=1} x_{ij} = b_j, i = 1, 2,, m$$

is a LPP with number of constraints

A.
$$m-n$$

B. mn

 $\mathsf{C}.\,m+n$

D.
$$\frac{m}{n}$$

Answer: C

23. A bag contains 3 red and 3 white balls. Two balls are drawn one by one. The probability that they are of different colours is.

A. 3/10

B. 2/5

C. 3/5

D. None of these

Answer: C

24. If M be a 3 imes 3 non-singular matrix with $\det(M)=lpha.$ If $M^{-1}adj(adjA)=KI$, then the value of K is

A. 1

 $\mathsf{B.}\,\alpha$

 $\mathsf{C}.\,\alpha^2$

D. α^3

Answer: B

25. Tangents are drawn from the origin to the curve $y = \cos X$. Their points of contact lie on

A.
$$x^2y^2=y^2-x^2$$

B.
$$x^2y^2=x^2+y^2$$

$$\mathsf{C}.\, x^2y^2=x^2-y^2$$

D. None of these

Answer: C

Watch Video Solution

26. The slope of the tangent to the curve $y = e^x \cos x$ is minimum at $x = a, 0 \le a \le 2\pi$, then the value of a is

A. 0

 $\mathsf{B.}\,\pi$

C. 2π

D. $3\pi/2$

Answer: **B**

27. Two lines $L_1: x = 5, \frac{y}{3-\alpha} = \frac{z}{-2}$ $L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then, α can take value (s)

A. 1, 4, 5

B. 1, 2, 5

C. 3, 4, 5

D. 2, 4, 5

Answer: A

28. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is x = 4, then the equation of ellipse is

A.
$$4x^2 + 3y^2 = 1$$

B. $3x^2 + 4y^2 = 12$
C. $4x^2 + 3y^2 = 12$
D. $3x^2 + 4y^2 = 1$

Answer: B

29. The function $f(x)=rac{x}{2}+rac{2}{x}$ has a local minimum at x=2 (b) x=-2 x=0 (d) x=1

A. x=2B. x=-2C. x=0

D. x = 1

Answer:

30. If
$$y=\left(x+\sqrt{1+x^2}
ight)^n$$
 then $\left(1+x^2
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}$

A. $n^2 y$ B. $-n^2 y$ C. -y

D. $2x^2y$

Answer: A

$$\textbf{31.} \quad \text{If} \quad \lim_{x \, \to \, \infty} \, x \sin\!\left(\frac{1}{x}\right) = A \; \text{ and } \; \lim_{x \, \to \, 0} \, x \sin\!\left(\frac{1}{x}\right) = B,$$

then which one of the following is correct?

A. A =1 and B = 0

B. A =0 and B = 1

C. A = 0 and B = 0

D. A =1 and B = 1

Answer: A

32. If a and b (
eq 0) are the roots of the quadratic $x^2+ax+b=0$ then the least value of $x^2+ax+b(x\in R)$ is

A.
$$\frac{2}{3}$$

B. $-\frac{9}{4}$
C. $\frac{9}{4}$
D. 1

Answer: B

33.
$$If0 < x < rac{\pi}{2}$$
 then

A. $\tan x < x < \sin x$

 $\mathsf{B.}\,x<\sin x<\tan x$

 $\mathsf{C.} \sin x < \tan x < x$

D. None of these

Answer: D

34. The degree of the differential equation satisfying

$$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$$
, is

A. 1

B. 2

C. 3

D. 4

Watch Video Solution

35. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also, 0 is a stationary point of f(x). If f(x) does not have an extremum at x = 0, then the value of integral $\int \frac{f(x)}{x^3 - 1} dx$, is

A.
$$rac{x^2}{2}+C$$

 $\mathsf{B.}\,x+C$

$$\mathsf{C}.\,\frac{x^3}{6}+C$$

D. None of these

Answer: B

36. The domain of the function $f(x) = rac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$, is

A. [1, 2]

B. [2, 3)

C. [1, 2]

D. [2, 3]

Answer: B

37. If the lines $p_1x + q_1y = 1 + q_2y = 1$ and $p_3x + q_3y = 1$

be concurrent, show that the point

 $(p_1, q_1), (p_2, q_2)$ and (p_3, q_3) are collinear.

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right angled triangle

Answer: A

38. Area of the circle in which a chord of length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre,

A. $\pi/2$ sq units

B. 2π sq units

C. π sq units

D. $\pi/4$ sq units

Answer: C

39. If
$$\frac{\cos A}{\cos B} = n$$
 and $\frac{\sin A}{\sin B} = m$, $then(m^2 - n^2)\sin^2 B =$
A. $1 + n^2$
B. $1 - n^2$
C. n^2
D. $-n^2$

Answer: **B**

40. If complex number Z_1, Z_2 and 0 are vertices of equilateral triangle, then $Z_1^2 + Z_2^2 - Z_1 Z_2$ is equal to

A. 0

- B. $Z_1 Z_2$
- C. $Z_1 + Z_2$

D. 1

Answer: A

41. If
$$ho=ig\{(x,y)\mid x^2+y^2=1,x,y\in Aig\}.$$
Then , ho is

A. reflexive

B. symmetric

C. transitive

D. anti-symmetric

Answer: B

42. A line line makes the same angle θ with each of the x and z-axes. If the angle β , which it makes with y-axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$ then $\cos^2 \theta$ equals

A. 2/5

B. 1/5

C.3/5

D. 2/3

Answer: C

43. If in a binomial distribution

$$n = 4$$
, $P(X = 0) = \frac{16}{81}$, then $P(X = 4)$ equals $\frac{1}{16}$ b. $\frac{1}{81}$
c. $\frac{1}{27}$ d. $\frac{1}{8}$
A. $\frac{1}{16}$
B. $\frac{1}{81}$
C. $\frac{1}{27}$
D. $\frac{1}{8}$

Answer: B

44. Let $f: R \to R$ be a function such that f(x + y) = f(x) + f(y) for all, $x, y \in R$ If f(x) is differentiable at x=0. then, which one of the following is incorrect?

A. f(x) is continuous, $orall x \in R$

B. f'(x) is constant, $orall x \in R$

C. f(x) is differentiable, $\forall x \in R$

D. f(x) is differentiable only in a finite interval containing

zero.

Answer: D

45. If binomial coefficients of three consecutive terms of $(1+x)^n$ are in H.P., then the maximum value of n, is

A. 1

B. 2

C. 0

D. None of these

Answer:

Watch Video Solution