©゙’ doubtnut

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2016

Mathematics

1. Let $f(x)=\frac{a x+b}{c x+d}$. Then the fof $(\mathrm{x})=\mathrm{x}$ provided that
A. $d=-a$
B. $d=a$
C. $a=b=1$
D. $a=b=c=d=1$

Answer: A

- Watch Video Solution

2. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are, respectively.

$$
\text { A. } 4,7
$$

B. 7,4
C. 4,4
D. 7,7

Answer: B

(Watch Video Solution

3. If A and B are positive acute angles satisfying the equalities $3 \cos ^{2} A+2 \cos ^{2} B=4$ and $\frac{3 \sin A}{\sin B}=\frac{2 \cos B}{\cos A}$, then $A+2 B$ is equal to
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: B
4. If $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=3$ then
$\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: A
5. If $\tan (\cot x)=\cot (\tan x)$, then $\sin 2 x$ is equal to :
A. $\frac{2}{(2 n+1) \pi}$
B. $\frac{4}{(2 n+1) \pi}$
C. $\frac{2}{n(n+1) \pi}$
D. $\frac{4}{n(n+1) \pi}$

Answer: B

D Watch Video Solution

6. The general solution of the equation
$\sin 2 x+2 \sin x+2 \cos x+1=0$ is
A. $3 n \pi-\frac{\pi}{4}$
B. $2 n \pi-\frac{\pi}{4}$
C. $2 n \pi+(-1)^{n} \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $n \pi-\frac{\pi}{4}$

Answer: D

- Watch Video Solution

7. In a $\triangle A B C$, if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$ and the side a $=2$, then area of the triangle is
A. 1
B. 2
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Answer: D

- Watch Video Solution

8.

$\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)-\cos ^{-1}\left(\frac{1-b^{2}}{1+b^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$,
then what os the value of x ?
A. a / b
B. $a b$
C. b / a
D. $\frac{a-b}{1+a b}$

Answer: D
9. The arithmetic mean of numbers a, b, c, d, e is M What is the value of $(a-M)+(b-M)+(c-M)+(d-M)+(e-M)$
A. M
B. $a+b+c+d+e$
C. 0
D. 5 M

Answer: C

- Watch Video Solution

10. The fourth term of an A.P. is equal to 3 times the first term and seventh term exceeds twice the third term by 1. find the first term and the common difference.
A. 2
B. 3
C. $\frac{3}{2}$
D. -1

Answer: A
11. The sum of first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+$.n terms
A. $n-1-2^{-n}$
B. 1
C. $n-1+2^{-n}$
D. $1+2^{-n}$

Answer: C

- Watch Video Solution

12. If $\log a, \log b$, and $\log c$ are in A.P. and also $\log a-\log 2 b$, $\log 2 b-\log 3 c, \log 3 c-\log a$ are in A.P., then
A. a, b, c, are in H.P.
B. $a, 2 b, 3 c$ are in A.P.
C. a, b, c are the sides of a triangle
D. none of the above

Answer: C

D Watch Video Solution

13. Find the sum to n terms of the series:

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\ldots . . \\
& \text { A. } \frac{x^{2 n}-1}{x^{2}-1} \times \frac{x^{2 n+2}+1}{x^{2 n}}+2 n \\
& \text { B. } \frac{x^{2 n}-1}{x^{2}+1} \times \frac{x^{2 n+2}-1}{x^{2 n}}-2 n
\end{aligned}
$$

C. $\frac{x^{2 n}-1}{x^{2}-1} \times \frac{x^{2 n-1}}{x^{2 n}}-2 n$
D. None of these

Answer: A

- Watch Video Solution

14. If $z_{1}=\sqrt{3}+i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$, then the complex number $\left(\frac{z_{1}}{z_{2}}\right)^{50}$ lies in the :
A. first quadrant
B. second quadrant
C. third quadrant
D. fourth quadrant

Answer: A

- Watch Video Solution

15. If the matrix $\left[\begin{array}{ccc}1 & 3 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]$ is singular then $\lambda=$
A. -2
B. 4
C. 2
D. -4

Answer: B
16. Let α_{1}, α_{2} and β_{1}, β_{2} be the roots of $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ respectively. If the system of equations
$\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has non-trivial
solution, then $\frac{b^{2}}{q^{2}}=\frac{a c}{p r}$. True or False
A. $\frac{b^{2}}{q^{2}}=\frac{a c}{p r}$
B. $\frac{c^{2}}{r^{2}}=\frac{a b}{p q}$
C. $\frac{a^{2}}{p^{2}}=\frac{b c}{q r}$
D. None of these

Answer: A
17. If [] denotes the greatest integer less than or equal to the real number under consideration and $-1 \leq x<0,0 \leq y<1,1 \leq z<2$, the value of the determinant $\left|\begin{array}{lll}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$ is
A. $[z]$
B. [y]
C. [x]
D. None of these

Answer: A
18. If α, β are the roots of the equations $x^{2}-2 x-1=0$.

Then what is the value of $\alpha^{2} \beta^{-2}+\alpha^{-2} \beta^{2}$
A. -2
B. 0
C. 30
D. 34

Answer: D

- Watch Video Solution

19. If a, b and c are real numbers then the roots of the equation
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
are always
A. real
B. imaginary
C. positive
D. positive

Answer: A

- Watch Video Solution

20. What is $\lim _{n \rightarrow \infty} \frac{a^{n}+b^{n}}{a^{n}-b^{n}}$ where $a>b>1$, equal to?
A. -1
B. 1
C. 0
D. None

Answer: B

- Watch Video Solution

21. The number of points at which the function $f(x)=\frac{1}{\log |x|}$ is discontinuous is
A. 1
B. 2
C. 3

D. 4

Answer: C

- Watch Video Solution

22. If $f(x)=\left\{\begin{array}{ll}\frac{x \log \cos x}{\log \left(1+x^{2}\right)}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then $\mathrm{f}(\mathrm{x})$ is
A. continuous as well as differentiable at $x=0$
B. continuous but not differentiable at $x=0$
C. differentiable but not continuous at $x=0$
D. neither continuous nor differentiable at $x=0$
23. For any differentiable function y of x, $\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=$
A. 0
B. y
C. $-y$
D. x

Answer: A
24. The set of all values of k for which the function $f(x)=\left(k^{2}-3 k+2\right)\left(\cos ^{2} \frac{x}{4}-\sin ^{2} \frac{x}{4}\right)+(k-1) x+\sin 1$ does not possess critical points is
A. $[1, \infty)$
B. $(0,1) \cup(1,4)$
C. $(-2,4)$
D. $(1,3) \cup(3,5)$

Answer: B
25. Match List I with List II and select the correct answer using the code given below the lists:

List I

(A) $f(x)=\cos x$
(B) $f(x)=\ln x$
(C) $f(x)=x^{2}-5 x+43$. The graph cute y-axis in only one point
(D) $f(x)=e^{x}$
4. The graph cuts x-axis in only one point
5 The graph cuts x -axis in infinite number of points
Codes:

	(A)	(B)	(C)	(D)
(a)	1	4	5	3
(b)	1	3	5	4
(c)	5	4	2	3
(d)	5	3	2	4

- Watch Video Solution

26. What is the x coordinate of the point on the curve $f(x)=$ $\sqrt{x}(7 x-6)$ where the tangent is parallel to x axis ?
A. $-\frac{1}{3}$
B. $\frac{2}{7}$
C. $\frac{6}{7}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

27. A wire 34 cm long is to he bent in the form of a quadrilateral of which each angle is 90°. What is the
maximum area which can be enclosed inside the quadrilateral.
A. $68 \mathrm{~cm}^{2}$
B. $70 \mathrm{~cm}^{2}$
C. $71.25 \mathrm{~cm}^{2}$
D. $72.25 \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

28. Consider the following statement in respect of the
function
$f(x)=x^{3}-1 x \in[-1,1]$

I $f(X)$ is increasing in $[-1,1]$
II $\mathrm{f}(\mathrm{x})$ has no root in $(-1,1]$
Which of the statement given above is /are correct
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Answer: A

- Watch Video Solution

29. At an extreme point of a function $f(X)$ the tangent to
the curve is
A. parallel to the x-axis
B. perpendicular to the x-axis
C. inclined at an angle 45° to the x-axis
D. inclined at an angle 60° to the x-axis

Answer: A

D Watch Video Solution
30. The curve $y=x e^{x}$ has minimum value equal to
A. $-\frac{1}{e}$
B. $\frac{1}{e}$
C. $-e$
D. e

Answer: A

- Watch Video Solution

31. A ray of light coming from the point (1,2) is reflected at a pont A on the x-axis and then passes through the point $(5,3)$. The co ordinate of the point A is
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

- Watch Video Solution

32. The lines represented by the equation
$x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0$, are
A. a pair of intersecting lines
B. a pair of parallel lines with distance between them $\frac{5}{2}$
C. a pair of parallel lines with distance between them
$5 \sqrt{2}$
D. a conic section, which is not a pair of straight lines
33. The line joining $(5,0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at P then the locus of P is
A. a pair of straight lines
B. a circle
C. a straight line
D. None of these

Answer: B

- Watch Video Solution

34. The number of integral values of λ for which the equation $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0 \quad$ is the equation fo a circle whose radius cannot exceed 5 , is 14 (b) 18 (c) 16 (d) none of these
A. 14
B. 18
C. 16
D. None

Answer: C

- Watch Video Solution

35. The lengths of the tangents from any point on the circle $15 x^{2}+15 y^{2}-48 x+64 y=0$ to the two circles
$5 x^{2}+5 y^{2}-24 x+32 y+75=0$
$5 x^{2}+5 y^{2}-48 x+64 y=0$ are in the ratio
A. 1: 2
B. 2: 3
C. $3: 4$
D. None

Answer: A
36. The length of the chord $x+y=3$ intercepted by the circle $x^{2}+y^{2}-2 x-2 y-2=0$ is
A. $\frac{7}{2}$
B. $3 \frac{\sqrt{3}}{2}$
C. $\sqrt{14}$
D. $\frac{\sqrt{7}}{2}$

Answer: C

- Watch Video Solution

37. The ,locus of the point of intersection of two perpendicular tangents to the parabola $y^{2}=4 a x$ is
A. $x^{2}+y^{2}=a^{2}$
B. $a y^{2}=x$
C. $x+a=0$
D. $x+y \pm a=0$

Answer: C

D Watch Video Solution

38. The parabola having its focus at $(3,2)$ and directrix along the y-axis has its vertex at
A. $(2,2)$
B. $\left(\frac{3}{2}, 2\right)$
C. $\left(\frac{1}{2}, 2\right)$
D. $\left(\frac{2}{3}, 2\right)$

Answer: B

- Watch Video Solution

39. The number of values of r satisfying the equation ${ }^{39} C_{3 r-1}-{ }^{39} C_{r^{2}}={ }^{39} C_{r^{2}-1}-{ }^{39} C_{3 r}$ is
A. 1
B. 2
C. 3
D. 4
40. If $\sum_{r=0}^{n} \frac{r+2}{r+1}{ }^{n} C_{r}=\frac{2^{8}-1}{6}$, then $\mathrm{n}=$
A. 8
B. 4
C. 6
D. 5

Answer: D

Watch Video Solution
41. All the words that can be formed using alphabets $\mathrm{A}, \mathrm{H}, \mathrm{L}$, U and R are written as in a dictionary (no alphabet is repeated). Rank of the word RAHUL is
A. 71
B. 72
C. 73
D. 74

Answer: D
42. If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $(x+a)^{n}$ are A and B respectively, then the value of $\left(x^{2}-a^{2}\right)^{n}$ is
A. $A^{2}-B^{2}$
B. $A^{2}+B^{2}$
C. $4 A B$
D. None

Answer: A
43. If the third term in the expansion of $\left[x+x^{\log _{10} x}\right]^{5}$ is 10^{6}, then x may be
A. 1
B. $\sqrt{10}$
C. 10
D. $10^{-2 / 5}$

Answer: C

- Watch Video Solution

44. If three vertices of a regular hexagon are chosen at random, then the chance that they form an equilateral
triangle is :
A. $\frac{1}{3}$
B. $\frac{1}{5}$
C. $\frac{1}{10}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

45. A man takes a step forward with probability 0.4 and back ward with probability 0.6. The probability that at the end of eleven steps he is one step away from the starting point is:
A. $\frac{2^{5} \cdot 3^{5}}{5^{10}}$
B. $462 \times\left(\frac{6}{25}\right)^{5}$
C. $231 \times \frac{3^{5}}{5^{10}}$
D. none of these

Answer: B

- Watch Video Solution

