

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2018

Mathematics

1. The domain of the function $f(x) = \sqrt{x^2 - [x]^2}$, where [x] is the greatest integer less than or equal to x, is R (b) $[0, +\infty]$ $(-\infty, 0)$ (d) none of these

- A. $(0,\infty)$
- B. $(-\infty, 0)$
- $\mathsf{C}.\,(\,-\infty,\infty)$
- D. None of these

Answer: D

2. If $m\sin heta=n\sin(heta+2lpha)$ then an(heta+lpha) is

A.
$$\frac{m+n}{m-n} \tan \alpha$$

B. $\frac{m+n}{m-n} \tan \theta$
C. $\frac{m+n}{m-n} \cot \alpha$
D. $\frac{m+n}{m-n} \cot \theta$

Answer: A

Watch Video Solution

3. Number of solutions of equation $\sin 9 heta = \sin heta$ in the interval $[0,2\pi]$

A. 16

B. 17

C. 18

D. 15

Answer: B

Watch Video Solution

4. A pole stands vertically, inside a triangular park \triangle ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in \triangle ABC the foot of the pole is at the

A. centroid

B. circumcentre

C. incentre

D. orthocentre

Answer: A

5.	Let	А,	Β,	and	С	are	the	angles	of	а	plain	triangle	and
ta	$n\frac{A}{2}$	= -	$\frac{1}{3}$, t	$ an \frac{B}{2} $	- =	$\frac{2}{3}$.	Then	$\tan \frac{C}{2}$; - is e	equ	al to		
	A. 7	/9											
	В. 2	/9											
	C . 1	/3											
	D. 2	/3											

Answer: A

6. If the amplitude of z-2-3i is $\pi/4$, then the locus of z=x+iy

is

A. x + y - 1 = 0

B. x - y - 1 = 0

C. x + y + 1 = 0

D. x - y + 1 = 0

Answer: D

Watch Video Solution

7. The roots of the equation $x^4 - 2x^3 + x - 380 = 0$ are

A. 5,
$$-4, \frac{1 \pm 5\sqrt{-3}}{2}$$

B. $-5, 4, \frac{-1 \pm 5\sqrt{-3}}{2}$
C. 5, 4, $\frac{-1 \pm 5\sqrt{-3}}{2}$

D.
$$-5, -4, \frac{1 \pm 5\sqrt{-3}}{2}$$

Answer: A

8. Roots of the equation $x^2 + bx - c = 0(b, c > 0)$ are

A. Both positive

B. Both negative

C. Of opposite sign

D. None of these

Answer: C

9. In how many ways can 12 gentlemen sit around a round table so that

three specified gentlemen are always together?

A.9!

B. 10!

C. 3!10!

D. 3!9!

Answer: D

Watch Video Solution

10. The number of ways in which first, second and third prizes can be given to 5 competitors is

A. 10

B.60

C. 15

D. 125

Answer: B

Watch Video Solution

11. The coefficient of
$$x^3$$
 in the expansion of $\left(x-rac{1}{x}
ight)^7$ is:

A. 14

B. 21

C. 28

D. 35

Answer: B

Watch Video Solution

12. If
$$x > 0, ext{ then } 1 + rac{\log_{e^2} x}{1!} + rac{\left(\log_{e^2} x
ight)^2}{2!}.....$$

A. *x*

 $\mathsf{B.}\,x^2$

C. 2x

D. \sqrt{x}

Answer: D

O Watch Video Solution

13. If a, b, c are in G.P., then

A.
$$a^2, b^2, c^2$$
 are in G.P.

B.
$$a^2(b+c), c^2(a+b), b^2(a+c)$$
 are in G.P.

C.
$$rac{a}{b+c}, rac{b}{c+a}, rac{c}{a+b}$$
 are in G.P.

D. None of these

Answer: A

14. The locus of the point of intersection of the lines $x = a \left(\frac{1-t^2}{1+t^2} \right)$ and $y = \frac{2at}{1+t^2}$ represent (t being a parameter)

A. circle

B. parabola

C. ellipse

D. hyperbola

Answer: A

15. The equation of the circle which passes through the point (4, 5) and

has its centre at (2, 2) is

A.
$$(x - 2) + (y - 2) = 13$$

B. $(x - 2)^2 + (y - 2)^2 = 13$
C. $(x)^2 + (y)^2 = 13$
D. $(x - 4)^2 + (y - 5)^2 = 13$

Answer: B

Watch Video Solution

16. Eccentricity of ellipse
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 if it passes through point (9, 5) and (12, 4) is

A.
$$\sqrt{3/4}$$

B. $\sqrt{4/5}$

C.
$$\sqrt{5/6}$$

D. $\sqrt{6/7}$

Answer: D

Watch Video Solution

17. Consider the equation of a parabola $y^2 + 4ax = 0$, where a > 0.

Which of the following is false ?

A. Tangent at the vertex is x = 0

B. Directrix of the parabola is x = 0

C. Vertex of the parabola is not at the origin

D. Focus of the parabola is at (a, 0)

Answer: D

18. The value of	$\lim_{n \to \infty}$	$\frac{1+2+3+n}{n^2+100}$	is equal to :
A. ∞			
$B.\frac{1}{2}$			
C. 2			
D. 0			

Answer: A

Watch Video Solution

19.
$$\lim_{x o 0} \sqrt{rac{x - \sin x}{x + \sin^2 x}}$$

A. 1

Β.Ο

 $C.\infty$

D. None of these

Answer: B

20. The probability of getting 10 in a single throw of three fair dice is

A.
$$\frac{1}{6}$$

B. $\frac{1}{8}$
C. $\frac{1}{9}$
D. $\frac{1}{5}$

Answer: B

21. A solution of the equation

$$an^{-1}(1+x) + an^{-1}(1-x) = rac{\pi}{2}$$
 is

A. 3	
B. 2	
C. 1	

Answer: C

D. 0

Watch Video Solution

22. If
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$$
 is an orthogonal matrix, then
A. $a = -2, b = -1$
B. $a = 2, b = 1$
C. $a = 2, b = -1$
D. $a = -2, b = 1$

Answer: A

23. The points represented by the complex numbers 1+i, -2+3i and $\frac{5}{3}i$ on the argand diagram are

A. vertices of an equilateral triangle

B. vertices of an isosceles triangle

C. collinear

D. None of these

Answer: C

Watch Video Solution

24. If matrix
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $A^{-1} = \frac{1}{k}$ adj A, then k is

B. -7

C. 15

D. -11

Answer: C

Watch Video Solution

25. If x,y,z are complex numbers , then $\Delta = egin{bmatrix} 0 & -y & -z \ ar{y} & 0 & -x \ ar{z} & ar{x} & 0 \end{bmatrix}$ is equal to

A. purely real

B. purely imaginary

C. complex

D. 0

Answer: B

26. If $f(x) = \{(\sin x; x \text{ rational}) \ (\cos x; x \text{ is irrational}) \text{ then the}$ function is

A. discontinuous at $x=n\pi+\pi/4$

B. continuous at $x=n\pi+\pi/4$

C. discontinuous at all x

Watch Video Solution

D. none of these

Answer: B

27. If : f(x)
$$= 1, \qquad \dots \quad 0 < x \le rac{3\pi}{4} \\ = 2. \sin \Bigl(rac{2x}{9} \Bigr), \qquad \dots rac{3\pi}{4} < x < \pi \end{cases}$$
 then :

A. f(x) is continuous at x = 0

B. f (x) is continuous at $x=\pi$

C. f(x) is continuous at $x=rac{3\pi}{4}$

D. f(x) is discontinuous at $x=rac{3\pi}{4}$

Answer: C

Watch Video Solution

28. The value of c in (0, 2) satisfying the mean value theorem for the

function $f(x)=x(x-1)^2, x\in [0,2]$ is equa to

A.
$$\frac{3}{4}$$

B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: B

Watch Video Solution

29. If
$$y = \frac{x}{x+1} + \frac{x+1}{x}$$
, then $\frac{d^2y}{dx^2}$ at x=1 is equal to
A. $\frac{7}{4}$
B. $\frac{7}{8}$
C. $\frac{1}{4}$
D. $\frac{-7}{8}$

Answer: A

Watch Video Solution

30. If
$$y=e^{2x}$$
, then $\displaystyle rac{d^2y}{dx^2}. \displaystyle rac{d^2x}{dy^2}$ is equal to

 $\mathsf{B.}\,e^{-2x}$

C. $2e^{-2x}$

 $\mathsf{D.}-2e^{\,-\,2x}$

Answer: D

31. A ball is dropped from a platform 19.6m high. Its position function is

A.
$$x = -4.9t^2 + 19.6(0 \le t \le 1)$$

B. $x = -4.9t^2 + 19.6(0 \le t \le 2)$
C. $x = -9.8t^2 + 19.6(0 \le t \le 2)$
D. $x = -4.9t^2 - 19.6(0 \le t \le 2)$

Answer: B

32. The value of the integral
$$\int_a^b rac{\sqrt{x}dx}{\sqrt{x}+\sqrt{1+b-x}}$$
 is

A. π

B.
$$rac{1}{2}(b-a)$$

C. $\pi/2$
D. $b-a$

Answer: B

Watch Video Solution

$$33. \int \frac{e^{x^2} (2x + x^3)}{(3 + x^2)^2} dx \text{ is equal to :}$$
A. $\frac{e^{x^2}}{(3 + x^2)} + k$
B. $\frac{1}{2} \frac{e^{x^2}}{(3 + x^2)^2} + k$
C. $\frac{1}{4} \frac{e^{x^2}}{(3 + x^2)^2} + k$
D. $\frac{1}{2} \frac{e^{x^2}}{(3 + x^2)} + k$

Answer: D

34. If
$$\int\limits_{0}^{a}f(2a-x)dx=m$$
 and $\int\limits_{0}^{a}f(x)dx=n$, then $\int\limits_{0}^{2a}f(x)dx$ is

equal to

 $\mathsf{A.}\,2m+n$

 $\mathsf{B}.\,m+2n$

C.m-n

 $\mathsf{D}.\,m+n$

Answer: D

Watch Video Solution

35. An integrating factor of the differential equation

$$\sin x rac{dy}{dx} + 2y \cos x = 1$$
 is

A. $\sin^2 x$

$$\mathsf{B.}\,\frac{2}{\sin x}$$

 $C.\log|\sin x|$

D.
$$\frac{1}{\sin^2 x}$$

Answer: A

D. None of these

Answer: C

37. Let

$$\overrightarrow{a} = \hat{i} - \hat{k}, \overrightarrow{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k} \text{ and } \overrightarrow{c} = y\hat{I} + x\hat{j} + (1 + x - y)\hat{k}$$

. Then $\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right]$ depends on
A. only y
B. only x
C. both x and y
D. neither x nor y

Answer: D

Watch Video Solution

38. If $\hat{i}+\hat{j},\,\hat{j}+\hat{k},\,\hat{i}+\hat{k}$ are the position vectors of the vertices of a ΔABC taken in order, then $\angle A$ is equal to

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{5}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: D

39. The projection of line joining (3, 4, 5) and (4, 6, 3) on the line joining

(-1, 2, 4) and (1, 0, 5) is

A.
$$\frac{4}{3}$$

B. $\frac{2}{3}$
C. $\frac{8}{3}$
D. $\frac{1}{3}$

Answer: A

40. Which of the following statements is correct?

A. Every L.P.P. admits an optimal solution.

B. A L.P.P. admits a unique optimal solution.

C. If a L.P.P. admits two optimal solutions, it has an infinite number

of optimal solutions

D. The set of all feasible solutions of a L.P.P. is not a convex set.

Answer: C

Watch Video Solution

41. If the constraints in a linear programming problem are changed

A. The problem is to be re-evaluated

B. Solution is not defined.

C. The objective function has to be modified.

D. The change in constraints is ignored.

Answer: A

Watch Video Solution

42. In a binomial distribution, the mean is 4 and variance is 3. Then its

mode is

A. 5

B. 6

C. 4

D. None of these

Answer: C

43. The sum
$$1 + \frac{1+a}{2!} + \frac{1+a+a^2}{3!} + \dots \infty$$
 is equal to
A. e^a
B. $\frac{e^a - e}{a-1}$
C. $(a-1)e^a$
D. $(a+1)e^a$

Answer: B

Watch Video Solution

44. The Boolean expression $imes(p \lor q) \lor (imes p \land q)$ is equivalent to :

А. р

B.q

C. ~q

D. ~p

Answer: D

45. If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately

A. 25.5

B.24.0

C. 22.0

 $\mathsf{D}.\,20.5$

Answer: B

Watch Video Solution