©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2018

Mathematics

1. The domain of the function $f(x)=\sqrt{x^{2}-[x]^{2}}$, where $[x]$ is the greatest integer less than or equal to x, is R (b) $[0,+\infty](-\infty, 0)$
(d) none of these
A. $(0, \infty)$
B. $(-\infty, 0)$
C. $(-\infty, \infty)$
D. None of these

- Watch Video Solution

2. If $m \sin \theta=n \sin (\theta+2 \alpha)$ then $\tan (\theta+\alpha)$ is
A. $\frac{m+n}{m-n} \tan \alpha$
B. $\frac{m+n}{m-n} \tan \theta$
C. $\frac{m+n}{m-n} \cot \alpha$
D. $\frac{m+n}{m-n} \cot \theta$

Answer: A

- Watch Video Solution

3. Number of solutions of equation $\sin 9 \theta=\sin \theta$ in the interval $[0,2 \pi]$ is
A. 16
B. 17
C. 18
D. 15

Answer: B

- Watch Video Solution

4. A pole stands vertically, inside a triangular park $\triangle \mathrm{ABC}$. If the angle of elevation of the top of the pole from each corner of the park is same, then in $\triangle A B C$ the foot of the pole is at the
A. centroid
B. circumcentre
C. incentre
D. orthocentre

Answer: A

- Watch Video Solution

5. Let A, B, and C are the angles of a plain triangle and $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$. Then $\tan \frac{C}{2}$ is equal to
A. $7 / 9$
B. $2 / 9$
C. $1 / 3$
D. $2 / 3$

Answer: A
6. If the amplitude of $z-2-3 i$ is $\pi / 4$, then the locus of $z=x+i y$ is
A. $x+y-1=0$
B. $x-y-1=0$
C. $x+y+1=0$
D. $x-y+1=0$

Answer: D

- Watch Video Solution

7. The roots of the equation $x^{4}-2 x^{3}+x-380=0$ are
A. $5,-4, \frac{1 \pm 5 \sqrt{-3}}{2}$
B. $-5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
C. $5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
D. $-5,-4, \frac{1 \pm 5 \sqrt{-3}}{2}$

Answer: A

- Watch Video Solution

8. Roots of the equation $x^{2}+b x-c=0(b, c>0)$ are
A. Both positive
B. Both negative
C. Of opposite sign
D. None of these

Answer: C

9. In how many ways can 12 gentlemen sit around a round table so that three specified gentlemen are always together?
A. 9 !
B. 10 !
C. $3!10$!
D. $3!9$!

Answer: D

- Watch Video Solution

10. The number of ways in which first, second and third prizes can be given to 5 competitors is
A. 10
B. 60
C. 15
D. 125

Answer: B

- Watch Video Solution

11. The coefficient of x^{3} in the expansion of $\left(x-\frac{1}{x}\right)^{7}$ is:
A. 14
B. 21
C. 28
D. 35

Answer: B

12. If $x>0$, then $1+\frac{\log _{e^{2}} x}{1!}+\frac{\left(\log _{e^{2}} x\right)^{2}}{2!} \ldots$.
A. x
B. x^{2}
C. 2 x
D. \sqrt{x}

Answer: D

- Watch Video Solution

13. If a, b, c are in G.P., then
A. a^{2}, b^{2}, c^{2} are in G.P.
B. $a^{2}(b+c), c^{2}(a+b), b^{2}(a+c)$ are in G.P.
C. $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in G.P.
D. None of these

- Watch Video Solution

14. The locus of the point of intersection of the lines
$x=a\left(\frac{1-t^{2}}{1+t^{2}}\right)$ and $y=\frac{2 a t}{1+t^{2}}$ represent (t being a parameter)
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: A

- Watch Video Solution

15. The equation of the circle which passes through the point $(4,5)$ and has its centre at $(2,2)$ is \qquad
A. $(x-2)+(y-2)=13$
B. $(x-2)^{2}+(y-2)^{2}=13$
C. $(x)^{2}+(y)^{2}=13$
D. $(x-4)^{2}+(y-5)^{2}=13$

Answer: B

- Watch Video Solution

16. Eccentricity of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ if it passes through point $(9,5)$ and $(12,4)$ is
A. $\sqrt{3 / 4}$
B. $\sqrt{4 / 5}$
C. $\sqrt{5 / 6}$
D. $\sqrt{6 / 7}$

Answer: D

Watch Video Solution

17. Consider the equation of a parabola $y^{2}+4 a x=0$, where $a>0$.

Which of the following is false ?
A. Tangent at the vertex is $x=0$
B. Directrix of the parabola is $x=0$
C. Vertex of the parabola is not at the origin
D. Focus of the parabola is at $(a, 0)$

Answer: D

18. The value of $\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots n}{n^{2}+100}$ is equal to :
A. ∞
B. $\frac{1}{2}$
C. 2
D. 0

Answer: A

- Watch Video Solution

19. $\lim _{x \rightarrow 0} \sqrt{\frac{x-\sin x}{x+\sin ^{2} x}}$
A. 1
B. 0
C. ∞
D. None of these
20. The probability of getting 10 in a single throw of three fair dice is
A. $\frac{1}{6}$
B. $\frac{1}{8}$
C. $\frac{1}{9}$
D. $\frac{1}{5}$

Answer: B

- Watch Video Solution

21. A solution of the equation
$\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$ is
A. 3
B. 2
C. 1
D. 0

Answer: C

- Watch Video Solution

22. If $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is an orthogonal matrix, then
A. $a=-2, b=-1$
B. $a=2, b=1$
C. $a=2, b=-1$
D. $a=-2, b=1$
23. The points represented by the complex numbers $1+i,-2+3 i$ and $\frac{5}{3} i$ on the argand diagram are
A. vertices of an equilateral triangle
B. vertices of an isosceles triangle
C. collinear
D. None of these

Answer: C

(D) Watch Video Solution

24. If matrix $A=\left[\begin{array}{lll}3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]$ and $A^{-1}=\frac{1}{k} \operatorname{adj} \mathrm{~A}$, then k is
A. 7
B. -7
C. 15
D. -11

Answer: C

(D) Watch Video Solution

25. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are complex numbers , then $\Delta=\left|\begin{array}{ccc}0 & -y & -z \\ \bar{y} & 0 & -x \\ \bar{z} & \bar{x} & 0\end{array}\right|$ is equal to
A. purely real
B. purely imaginary
C. complex
D. 0

Answer: B

26. If $f(x)=\{(\sin x ; x$ rational) $(\cos x ; x$ is irrational) then the function is
A. discontinuous at $x=n \pi+\pi / 4$
B. continuous at $x=n \pi+\pi / 4$
C. discontinuous at all x
D. none of these

Answer: B

- Watch Video Solution

$$
=1,
$$

27. If: $\mathrm{f}(\mathrm{x})$
$=2 . \sin \left(\frac{2 x}{9}\right), \quad \ldots \frac{3 \pi}{4}<x<\pi$
... $0<x \leq \frac{3 \pi}{4}$
then :
A. $f(x)$ is continuous at $x=0$
B. $\mathrm{f}(\mathrm{x})$ is continuous at $x=\pi$
C. $\mathrm{f}(\mathrm{x})$ is continuous at $x=\frac{3 \pi}{4}$
D. $\mathrm{f}(\mathrm{x})$ is discontinuous at $x=\frac{3 \pi}{4}$

Answer: C

- Watch Video Solution

28. The value of c in $(0,2)$ satisfying the mean value theorem for the function $f(x)=x(x-1)^{2}, x \in[0,2]$ is equa to
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: B

29. If $y=\frac{x}{x+1}+\frac{x+1}{x}$, then $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=1$ is equal to
A. $\frac{7}{4}$
B. $\frac{7}{8}$
C. $\frac{1}{4}$
D. $\frac{-7}{8}$

Answer: A

- Watch Video Solution

30. If $y=e^{2 x}$, then $\frac{d^{2} y}{d x^{2}} \cdot \frac{d^{2} x}{d y^{2}}$ is equal to
A. 1
B. $e^{-2 x}$
C. $2 e^{-2 x}$
D. $-2 e^{-2 x}$

- Watch Video Solution

31. A ball is dropped from a platform 19.6 m high. Its position function is
A. $x=-4.9 t^{2}+19.6(0 \leq t \leq 1)$
B. $x=-4.9 t^{2}+19.6(0 \leq t \leq 2)$
C. $x=-9.8 t^{2}+19.6(0 \leq t \leq 2)$
D. $x=-4.9 t^{2}-19.6(0 \leq t \leq 2)$

Answer: B

- Watch Video Solution

32. The value of the integral $\int_{a}^{b} \frac{\sqrt{x} d x}{\sqrt{x}+\sqrt{1+b-x}}$ is
A. π
B. $\frac{1}{2}(b-a)$
C. $\pi / 2$
D. $b-a$

Answer: B

- Watch Video Solution

33. $\int \frac{e^{x^{2}}\left(2 x+x^{3}\right)}{\left(3+x^{2}\right)^{2}} d x$ is equal to :
A. $\frac{e^{x^{2}}}{\left(3+x^{2}\right)}+k$
B. $\frac{1}{2} \frac{e^{x^{2}}}{\left(3+x^{2}\right)^{2}}+k$
C. $\frac{1}{4} \frac{e^{x^{2}}}{\left(3+x^{2}\right)^{2}}+k$
D. $\frac{1}{2} \frac{e^{x^{2}}}{\left(3+x^{2}\right)}+k$

Answer: D
34. If $\int_{0}^{a} f(2 a-x) d x=m$ and $\int_{0}^{a} f(x) d x=n$, then $\int_{0}^{2 a} f(x) d x$ is equal to
A. $2 m+n$
B. $m+2 n$
C. $m-n$
D. $m+n$

Answer: D

- Watch Video Solution

35. An integrating factor of the differential equation
$\sin x \frac{d y}{d x}+2 y \cos x=1$ is
A. $\sin ^{2} x$
B. $\frac{2}{\sin x}$
C. $\log |\sin x|$
D. $\frac{1}{\sin ^{2} x}$

Answer: A

- Watch Video Solution

36. The expression satisfying the differential equation $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=1$ is
A. $x^{2} y-x y^{2}=c$
B. $\left(y^{2}-1\right) x=y+c$
C. $\left(x^{2}-1\right) y=x+c$
D. None of these

Answer: C

.Then $[\vec{a}, \vec{b}, \vec{c}]$ depends on
A. only y
B. only x
C. both x and y
D. neither x nor y

Answer: D

- Watch Video Solution

38. If $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}$ are the position vectors of the vertices of
$\triangle A B C$ taken in order, then $\angle A$ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

39. The projection of line joining $(3,4,5)$ and $(4,6,3)$ on the line joining $(-1,2,4)$ and $(1,0,5)$ is
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{8}{3}$
D. $\frac{1}{3}$
40. Which of the following statements is correct?
A. Every L.P.P. admits an optimal solution.
B. A L.P.P. admits a unique optimal solution.
C. If a L.P.P. admits two optimal solutions, it has an infinite number of optimal solutions
D. The set of all feasible solutions of a L.P.P. is not a convex set.

Answer: C

- Watch Video Solution

41. If the constraints in a linear programming problem are changed
A. The problem is to be re-evaluated
B. Solution is not defined.
C. The objective function has to be modified.
D. The change in constraints is ignored.

Answer: A

(D) Watch Video Solution

42. In a binomial distribution, the mean is 4 and variance is 3 . Then its mode is
A. 5
B. 6
C. 4
D. None of these

Answer: C

43. The sum $1+\frac{1+a}{2!}+\frac{1+a+a^{2}}{3!}+\ldots . \infty$ is equal to
A. e^{a}
B. $\frac{e^{a}-e}{a-1}$
C. $(a-1) e^{a}$
D. $(a+1) e^{a}$

Answer: B

- Watch Video Solution

44. The Boolean expression $\sim(p \vee q) \vee(\sim p \wedge q)$ is equivalent to :
A. p
B. q
C. $\sim q$
D. $\sim p$

Answer: D

- Watch Video Solution

45. If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately
A. 25.5
B. 24.0
C. 22.0
D. 20.5

Answer: B

