

MATHS

BOOKS - BITSAT GUIDE

RECTANGULAR COORDINATES AND STRAIGHT LINE

Practice Exercise

1. The base f an equilateral triangle with side 2a lies along the y-axis such that the mid point

of the base is at the origin. Find the vertices of

the triangle.

A.
$$(\sqrt{3}a, 0), (0, a), (0, -a)$$

B. $(\sqrt{3}a, 0), (a, 0), (1, -a)$
C. $(\sqrt{3}a, 1), (a, 0), (-a, 0)$
D. $(\sqrt{3}a, 0), (0, a), (-a, 0)$

2. If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, -1), then the length of the side of the triangle is (in unit)

A.
$$\sqrt{\frac{2}{3}}$$

B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{1}{2}}$
D. $\sqrt{\frac{5}{6}}$

3. The coordinates of the middle points of the sides of a triangle are (4, 2), (3, 3) and (2, 2), then the coordinates of its centroid are

- A. (3, 7/3)
- B. (3, 3)
- C. (4, 3)
- D. None

4. If p is the length of perpendicular from the origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ and a^2 , p^2 and b^2 are in AP, the show that $a^4 + b^4 = 0$.

- A. 1
- B. 2
- C. 3

D. 0

Answer: D

5. A line joining A(2, 0) and B(3, 1) is rotated about A .in anticlock wise direction through angle 15^0 ,then the equation of AB in the new position is

A.
$$y-\sqrt{2}x+2\sqrt{3}=0$$

B.
$$y-\sqrt{3}x+\sqrt{3}=0$$

C.
$$y-\sqrt{2}x+\sqrt{3}=0$$

D.
$$y-\sqrt{3}x+2\sqrt{3}=0$$

Answer: D

6. The number of integral values of m, for which the x coordinate of the point of intersection of the lines 3x + 4y = 9 and y = mx + 1 is also an integer, is

A. 2

B. 0

D. 1

Answer: A

Watch Video Solution

7. If p is the length of perpendicular from origin to the line whose intercept on the axes are a and b, then $\frac{1}{a^2} + \frac{1}{b^2}$ is equal to

A. $1/p^3$

B. 1/p

C. $1/p^2$

D. p

Answer: C

8. If t_1, t_2 and t_3 are distinct, then the points $ig(t_1, 2at_1+at_1^3ig), ig(t_2, 2at_2+at_2^3ig)$ and $ig(t_3, 2at_3+at_3^3ig)$ are collinear, when

A. $t_1 t_2 t_3 = 1$

 $\mathsf{B}.\,t_1 + t_2 + t_3 = t_1 t_2 t_3$

C.
$$t_1 + t_2 + t_3 = 0$$

D. $t_1 + t_2 + t_3 = 1$

Answer: C

Watch Video Solution

9. If two vertices of a triangle are (5, -1) and (-2,

3) and if its orthocentre lies at the origin, then

the coordinates of third vertex are

A. (4, 7)

- B. (-4, -7)
- C. (2, -3)
- D. (5, -1)

Answer: B

10. If the vertices of a triangle have integral

coordinates, then the triangle is

A. equilateral

- B. never equilateral
- C. always isosceles
- D. None of these

Answer: B

11. The area bounded by the curves x + 2|y| = 1

and x = 0 is

A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. 1

D. 2

Answer: B

Watch Video Solution

12. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in GP with same common ratio, then the points $P(x_1, y_1), Q(x_2, y_2)$ and $R(x_3, y_3)$ A. lie on a straight line

B. lie on an ellipse

C. lie on a circle

D. are vertices of a triangle

Answer: A

Watch Video Solution

13. If the area of the triangle whose vertices are (b, c), (c, a) and (a, b) is Δ , then the area of triangle whose vertices are

$$ig(ac-b^2,ab-c^2ig),ig(ba-c^2,bc-a^2ig)$$
 and $ig(cb-a^2,ca-b^2ig),$ is

A. Δ^2

- $\mathsf{B.}\left(a+b+c\right)^{2}\!\Delta$
- C. $a\Delta+b\Delta^2$
- D. None of these

Answer: B

14. If $\frac{x}{c} + \frac{y}{d} = 1$ is any line through the intersection of $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$, then

A.
$$\frac{1}{c} + \frac{1}{d} = \frac{1}{a} + \frac{1}{b}$$

B. $\frac{1}{d} + \frac{1}{a} = \frac{1}{b} + \frac{1}{c}$
C. $\frac{1}{b} + \frac{1}{d} = \frac{1}{c} + \frac{1}{a}$

D. None of these

Answer: B

15. Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, - 1) and parallel to PS, is

A. 4x + 7y + 3 = 0

B. 2x -9y-11= 0

C. 4x - 7y - 11=0

D. 2x + 9y + 7 = 0

View Text Solution

Answer: D

16. The x-coordinates of the incentre of the triangle that has the coordinates of mid-point of its sides as (0, 1), (1, 1) and (1, 0), is

A. $2+\sqrt{2}$ B. $2-\sqrt{2}$ C. $1+\sqrt{2}$ D. $1-\sqrt{2}$

Answer: B

17. The angle between the lines $\sqrt{3}x+y=1$ and $x + \sqrt{3}y = 1$ is A. 30° $B.60^{\circ}$ $C.90^{\circ}$ D. 45° **Answer:**

Watch Video Solution

18. Show that the tangent of an angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ and $\frac{2ab}{a^2 - b^2}.$ A. $\frac{3ab}{a^2 - b^2}$ B. $\frac{ab}{a^2 - b^2}$ C. $\frac{2ab}{a^2 - b^2}$ D. $\frac{4ab}{a^2 - b^2}$

Answer: C

19. The locus of the point of intersection of the lines $x\sin heta+(1-\cos heta)y=a\sin heta$ and $x\sin heta-(1+\cos heta)y+a\sin heta=0$ is

A.
$$x^2-y^2=a^2$$

B.
$$x^2+y^2=a^2$$

$$\mathsf{C}.\,y^2=ax$$

D. None of these

Answer: B

20. If A(2, -3) and B(-2, 1) are two vertices of a triangle and third vertex moves on the line 2x
+ 3y = 9, then the locus of the centroid of the triangle is

B. x - y = 1

C. 2x + 3y = 1

D. 2x + 3y = 3

21. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3:2, then k is equal to

A.
$$\frac{29}{5}$$

B. 5

D. $\frac{11}{5}$

Answer: C

View Text Solution

A.
$$\frac{3}{10}$$

B. $\frac{2}{9}$
C. $\frac{1}{4}$

 $\mathsf{D}.\,\frac{1}{3}$

Answer: A

Watch Video Solution

23. The foot of the perpendicular from (2, 3) upon the line 4x - 5y + 8 = 0 is

A. (0, 0)

B. (1, 1)

$$\mathsf{C}.\left(\frac{41}{78},\frac{128}{75}\right)$$

$$\mathsf{D}.\left(\frac{78}{41},\frac{128}{41}\right)$$

Answer: D

Watch Video Solution

24. A straight line L with negative slope passes through the point (8,2) and cuts the positive coordinate axes at the points P and Q .as L varies, the absolute minimum value of $\frac{OP+OQ}{2}$ O is origin is B. 18

C. 16

D. 112

Answer: B

Watch Video Solution

25. If the equation of the sides of a triangle are x + y = 2, y = x and $\sqrt{3}y + x = 0$, then which of the following is an exterior point of the triangle?

A. Orthocentre

B. Incentre

C. Centroid

D. None of these

Answer: A

26. Without change of axes the origin is shifted to (h, k), then from the equation $x^2 + y^2 - 4x + 6y - 7 = 0$, then therm

containing linear powers are missing, then point (h, k) is

A. (3, 2)

B. (-3, 2)

C. (2, -3)

D. (-2, -3)

Answer: C

27. Given the family of lines

a(2x+y+4)+b(x-2y-3)=0. The

number of lines belonging to the family at a distance $\sqrt{10}$ from any point (2,-3) is

A. 0

B. 1

C. 2

D. 4

Answer: B

28. Let A(1,k),B(1,1) and C(2,1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is 1, then the set of values which k can take is given by:

A. {1, 3} B. {0, 2} C. {-1, 3} D. {-3, -2}

29. The value of k such that

$$3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$$

may represent a pair of straight lines , is

A. 3

B.4

C. 6

Answer: B

30. Let A(2, -3) and B(-2, 1) be the vertices of Δ ABC. If the centroid of this triangle moves on the line 2x + 3y = 1 then the locus of the vertex C is the line

A.
$$2x + 3y = 9$$

B. 2x - 3y = 7

C. 3x + 2y = 5

D.
$$3x - 2y = 3$$

Answer: A

View Text Solution

31. Find the equation of the straight line passing through the point of intersection of the lines

x - y + 1 = 0 and 2x - 3y + 5 = 0 and at a distance $rac{7}{5}$ from the point (3,2)

D. None of the above

Answer: A

Watch Video Solution

32. If the sides BC, CA, AB of \triangle ABC are respectively x + 2y = 1, 3x + y + 5 = 0, x - y + 2 =

0. Then, the altitude through B is

B.
$$x - 3y + 4 = 0$$

C.
$$3x - y + 4 = 0$$

Answer: B

Watch Video Solution

33. The equation of straight line passing through (-2,-7) and having an intercept of length 3 between the straight lines : 4x + 3y =

12, 4x + 3y = 3 are : (A) 7x + 24y + 182 = 0 (B) 7x

+ 24y + 18 = 0 (C) x + 2 = 0 (D) x - 2 = 0

A. 7x - 24y - 182 = 0

B. 7x + 24y + 182 = 0

C. 7x + 24y - 182 = 0

D. None of the above

Answer: B

Watch Video Solution

34. A variable straight line drawn through the point of intersection of lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ meets the co ordinates axes in A and B. Locus of the mid point of AB is

A.
$$2xy(a + b) = ab(x + y)$$

B.
$$2xy (a - b) = ab (x - y)$$

C.
$$2xy (a + b) = ab (x - y)$$

D. None of the above

35. If non-zero numbers a, b and c are in HP, then the straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point

A.
$$\left(1, \ -\frac{1}{2}\right)$$

B. (1, -2)

C. (-1, -2)

D. (-1, 2)

Answer: B

36. The vertices of a triangle are (A(-1, -7), B(5, 1), and C(1, 4)). The equation of the bisector of $\angle ABC$ is____

- A. x + 7y 2 = 0
- B. x 7y 2 = 0
- C. x 7y + 2 = 0
- D. None of these

Answer: C

37. If (a, a^2) falls inside the angle made by the x

Vatch Video Solution

lines $y = \frac{x}{2}, x > 0$ and y = 3x, x > 0, then

a belongs to the interval

A.
$$\left(rac{1}{2},3
ight)$$

B. $\left(-3,-rac{1}{2}
ight)$
C. $\left(0,rac{1}{2}
ight)$

D. $(3,\infty)$

38. The equation of two equal sides of an isosceles triangle are 7x - y + 3 = 0 and x + y - 3 = 0 and its third side is passes through the point (1, -10). The equation of the third side is

C. x + 3y = 31

D. x + 3y = -31

Answer: B

39. Let P = (-1, 0), Q(0, 0) and $R = (3, 3\sqrt{3})$ be three points. Then the equation of the bisector of the angle PQR is

A.
$$rac{\sqrt{3}}{2}x+y=0$$

B.
$$x+\sqrt{3}y=0$$

C.
$$\sqrt{3}x+y=0$$

D.
$$x+rac{\sqrt{3}}{2}y=0$$

40. A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A. Its equation is -

B. 3x + 4y = 25

C. x + y = 7

D. 3x - 4y + 7 = 0

Answer: A

41. The straight lines 5x + 4y = 0, x + 2y - 10 = 0and 2x + y + 5 = 0 are

A. concurrent

B. the sides of an equilateral triangle

C. the sides of a right angled triangle

D. None of the above

Answer: A

42. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay+ c = 0 and 5bx + 2by + d = 0 lie in the fourth quadrant and is equidistant from the two axes, then

A. 3bc-2ad = 0

B. 3bc + 2ad = 0

C. 2bc-3ad = 0

D. 2bc + 3ad = 0

Answer: A

43. Let PQR be a right angled isosceles triangle, right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is

 $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$ Β.

 $3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$

С.

$$3x^2 - 3y^2 - 8xy - 20x - 10y - 25 = 0$$

D.

 $3x^2 - 3y^2 + 8xy + 20x - 10y + 25 = 0$

Answer: B

Watch Video Solution

Bitsat Archives

1. The value of k such that the lines $2x - 3y + k = 0, \, 3x - 4y - 13 = 0$ and 8x - 11y - 33 = 0 are concurrent is

A. 20

B. -7

C. 7

D. -20

Answer: B

- 2. Three straight lines
- 2x + 11y 5 = 0
- 24x + 7y 20 = 0

4x - 3y - 2 = 0

A. form a triangle

B. are only concurrent

C. are concurrent with one line bisecting

the angle between the other two

D. None of the above

Answer: C

View Text Solution

3. The equation of the lines through ((1,1) and making angles of 45° with the line x+y=0 are

A.
$$x-1=0, x - y = 0$$

$$C. x + y - 2 = 0, y - 1 = 0$$

D. x-1= 0, y -1=0

Answer: D

Watch Video Solution

4. The equation of the base BC of an equilateral \triangle ABC is x + y = 2 and A is (2, - 1). The length of the side of the triangle is

A. $\sqrt{2}$ $\mathsf{B.}\left(\frac{3}{2}\right)^{1/2}$ $\mathsf{C}.\left(\frac{1}{2}\right)^{1/2}$ D. $\left(\frac{2}{3}\right)^{1/2}$

Answer: D

5. The foot of the perpendicular from the point (3, 4) on the line 3x - 4y + 5 = 0 is

A.
$$\left(\frac{81}{25}, \frac{92}{25}\right)$$

B. $\left(\frac{92}{25}, \frac{81}{25}\right)$
C. $\left(\frac{45}{26}, \frac{54}{24}\right)$
D. $\left(\frac{45}{26}, \frac{54}{26}\right)$

Answer: A

6. The equation of the bisector of the acute angle between the lines 3x + 4y + 5 = 0 and 12x - 5y - 7 = 0, is

A.
$$21x + 77y + 100 = 0$$

B. 99x-27y + 30 = 0

C. 99x + 27y + 30 = 0

D. 21x - 77y - 100 = 0

Answer: C

View Text Solution

7. The line x + y = 4 divides the line joining the

points (-1, 1) and (5, 7) in the ratio

A. 2:1

B. 1:2

C. 1:2 extenally

D. None of the above

Answer:

Watch Video Solution

8. The condition that the straight line joining the origin to the points of intersection of the

line 4x + 3y = 24 with the circle $(x-3)^2 + (y-4)^2 = 25$

A. are coincident

- B. are perpendicular
- C. make equal angle with X-axis
- D. None of the above

Answer: B

9. Two opposite vertices of a rectangle are (1, 3) and (5, 1). If the equation of a diagonal of this rectangle is y = 2x + c. Then, the value of c is

A. -1

B. -3

C. -4

D. -9

Answer: C

10. The transformed equation of $3x^2 + 3y^2 + 2xy - 2 = 0$ when the coordinats axes are rotated through an angle of 45° , is

A.
$$x^2 + 2y^2 = 1$$

B. $2x^2 + y^2 = 1$
C. $x^2 + y^2 = 1$
D. $x^2 + 3y^2 = 1$

Answer: B

11. If I, m, n are in AP, then the line lx+my+n=0` will always pass through the point

A. (-1, 2)

B. (1, -2)

C. (1, 2)

D. (2, 1)

Answer: B

12. If a vertex of a triangle is (1, 1) and the midpoints of two side through this vertex are (-1, 2) and (3, 2), then centroid of the triangle is

A.
$$\left(1, \frac{7}{3}\right)$$

B. $\left(\frac{1}{3}, \frac{7}{3}\right)$
C. $\left(-\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(-1, \frac{7}{3}\right)$

Answer: A

13. The equations to the sides of a triangle are $x-3y=0,\,4x+3y=5$ and 3x+y=0.The line 3x-4y=0 passes through

A. the incentre

B. the centroid

C. the orthocentre

D. the circumcentre

14. If (0, -1) and (0, 3) are two opposite vertices of a square, then the other two vertices are

A. (0, 1), (0, -3)

B. (3, -1), (0, 0)

C. (2, 1), (-2, 1)

D. (2, 2), (1, 1)

15. The equation to the line bisecting the joining of (3. - 4) and (5, 2) having its intercepts on X-axis and Y-axis in the ratio 2:1,

B. 2x - y = 9

C.
$$x + 2y = 2$$

D.
$$2x + y = 7$$

Watch Video Solution

16. The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is A. (-1, -1)

B. (0, -1)

C. (1, 1)

D. (-1, 0)

