©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

RECTANGULAR COORDINATES AND

STRAIGHT LINE

Practice Exercise

1. The base f an equilateral triangle with side
$2 a$ lies along the y-axis such that the mid point
of the base is at the origin. Find the vertices of the triangle.

$$
\begin{aligned}
& \text { A. }(\sqrt{3} a, 0),(0, a),(0,-a) \\
& \text { B. }(\sqrt{3} a, 0),(a, 0),(1,-a) \\
& \text { C. }(\sqrt{3} a, 1),(a, 0),(-a, 0) \\
& \text { D. }(\sqrt{3} a, 0),(0, a),(-a, 0)
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. If the equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$, then the length of the side of the triangle is
(in unit)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2}{3}} \\
& \text { B. } \sqrt{\frac{3}{2}} \\
& \text { C. } \sqrt{\frac{1}{2}} \\
& \text { D. } \sqrt{\frac{5}{6}}
\end{aligned}
$$

Answer: A
3. The coordinates of the middle points of the sides of a triangle are $(4,2),(3,3)$ and $(2,2)$, then the coordinates of its centroid are
A. $(3,7 / 3)$
B. $(3,3)$
C. $(4,3)$
D. None

Answer: A
4. If p is the length of perpendicular from the origin on the line $\frac{x}{a}+\frac{y}{b}=1$ and a^{2}, p^{2} and b^{2} are in AP, the show that $a^{4}+b^{4}=0$.
A. 1
B. 2
C. 3
D. 0

- Watch Video Solution

5. A line joining $A(2,0)$ and $B(3,1)$ is rotated about A in anticlock wise direction through angle 15^{0},then the equation of $A B$ in the new position is
A. $y-\sqrt{2} x+2 \sqrt{3}=0$
B. $y-\sqrt{3} x+\sqrt{3}=0$
C. $y-\sqrt{2} x+\sqrt{3}=0$
D. $y-\sqrt{3} x+2 \sqrt{3}=0$

Answer: D

D Watch Video Solution

6. The number of integral values of m, for which the x coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer, is
A. 2
B. 0
C. 4
D. 1

Answer: A

D Watch Video Solution

7. If p is the length of perpendicular from origin to the line whose intercept on the axes
are a and b, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ is equal to
A. $1 / p^{3}$
B. $1 / p$
C. $1 / p^{2}$
D. p

Answer: C

D View Text Solution

8. If t_{1}, t_{2} and t_{3} are distinct, then the points
$\left(t_{1}, 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$
and
$\left(t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$ are collinear, when
A. $t_{1} t_{2} t_{3}=1$

$$
\begin{aligned}
& \text { B. } t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3} \\
& \text { C. } t_{1}+t_{2}+t_{3}=0 \\
& \text { D. } t_{1}+t_{2}+t_{3}=1
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. If two vertices of a triangle are $(5,-1)$ and $(-2$,

3) and if its orthocentre lies at the origin, then
the coordinates of third vertex are
A. $(4,7)$
B. (-4, -7)
C. $(2,-3)$
D. $(5,-1)$

Answer: B

D View Text Solution

10. If the vertices of a triangle have integral coordinates, then the triangle is
A. equilateral
B. never equilateral
C. always isosceles
D. None of these

Answer: B

D View Text Solution
11. The area bounded by the curves $x+2|y|=1$
and $\mathrm{x}=0$ is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 2

Answer: B

D Watch Video Solution

12. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in GP
with same common ratio, then the points
$P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $R\left(x_{3}, y_{3}\right)$
A. lie on a straight line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle

Answer: A

D Watch Video Solution

13. If the area of the triangle whose vertices
are $(b, c),(c, a)$ and (a, b) is Δ, then the area of
$\left(a c-b^{2}, a b-c^{2}\right),\left(b a-c^{2}, b c-a^{2}\right) \quad$ and $\left(c b-a^{2}, c a-b^{2}\right)$, is
A. Δ^{2}
B. $(a+b+c)^{2} \Delta$
C. $a \Delta+b \Delta^{2}$
D. None of these

Answer: B

- Watch Video Solution

14. If $\frac{x}{c}+\frac{y}{d}=1$ is any line through the intersection of $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$, then
A. $\frac{1}{c}+\frac{1}{d}=\frac{1}{a}+\frac{1}{b}$
B. $\frac{1}{d}+\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{d}=\frac{1}{c}+\frac{1}{a}$
D. None of these

Answer: B
15. Let PS be the median of the triangle with
vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through (1, - 1) and parallel to PS , is
A. $4 x+7 y+3=0$
B. $2 x-9 y-11=0$
C. $4 x-7 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

16. The x-coordinates of the incentre of the
triangle that has the coordinates of mid-point of its sides as $(0,1),(1,1)$ and $(1,0)$, is
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B
17. The angle between the lines $\sqrt{3} x+y=1$
and $x+\sqrt{3} y=1$ is
A. 30°
B. 60°
C. 90°
D. 45°

Answer:

18. Show that the tangent of an angle between
the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{a}-\frac{y}{b}=1$ and

$$
\frac{2 a b}{a^{2}-b^{2}}
$$

$$
\begin{aligned}
& \text { A. } \frac{3 a b}{a^{2}-b^{2}} \\
& \text { B. } \frac{a b}{a^{2}-b^{2}} \\
& \text { C. } \frac{2 a b}{a^{2}-b^{2}} \\
& \text { D. } \frac{4 a b}{a^{2}-b^{2}}
\end{aligned}
$$

Answer: C
19. The locus of the point of intersection of the
lines $\quad x \sin \theta+(1-\cos \theta) y=a \sin \theta \quad$ and
$x \sin \theta-(1+\cos \theta) y+a \sin \theta=0$ is
A. $x^{2}-y^{2}=a^{2}$
B. $x^{2}+y^{2}=a^{2}$
C. $y^{2}=a x$
D. None of these

Answer: B
20. If $A(2,-3)$ and $B(-2,1)$ are two vertices of a triangle and third vertex moves on the line $2 x$
$+3 y=9$, then the locus of the centroid of the triangle is
A. $2 x-3 y=1$
B. $x-y=1$
C. $2 x+3 y=1$
D. $2 x+3 y=3$

Answer: C

D View Text Solution

21. If the line $2 x+y=k$ passes through the
point which divides the line segment joining
the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then
k is equal to
A. $\frac{29}{5}$
B. 5
C. 6

D. $\frac{11}{5}$

Answer: C

D View Text Solution

22. The distance between the line
$3 x+4 y=9$ and $6 x+8 y=15$ is
A. $\frac{3}{10}$
B. $\frac{2}{9}$
C. $\frac{1}{4}$

D. $\frac{1}{3}$

Answer: A

D Watch Video Solution

23. The foot of the perpendicular from $(2,3)$
upon the line $4 x-5 y+8=0$ is
A. $(0,0)$
B. $(1,1)$
C. $\left(\frac{41}{78}, \frac{128}{75}\right)$
D. $\left(\frac{78}{41}, \frac{128}{41}\right)$

Answer: D

D Watch Video Solution

24. A straight line L with negative slope passes
through the point $(8,2)$ and cuts the positive coordinate axes at the points P and Q.as L
varies, the absolute minimum value of
$O P+O Q$ $2-\mathrm{O}$ is origin is
A. 10
B. 18
C. 16
D. 112

Answer: B

D Watch Video Solution

25. If the equation of the sides of a triangle
are $\mathrm{x}+\mathrm{y}=2, \mathrm{y}=\mathrm{x}$ and $\sqrt{3} y+x=0$, then
which of the following is an exterior point of the triangle?
A. Orthocentre
B. Incentre
C. Centroid
D. None of these

Answer: A

D View Text Solution
26. Without change of axes the origin is shifted to (h, k), then from the equation $x^{2}+y^{2}-4 x+6 y-7=0, \quad$ then therm
containing linear powers are missing, then point (h, k) is
A. $(3,2)$
B. $(-3,2)$
C. $(2,-3)$
D. $(-2,-3)$

Answer: C

D Watch Video Solution

27. Given the family of lines
$a(2 x+y+4)+b(x-2 y-3)=0$.
The
number of lines belonging to the family at a distance $\sqrt{10}$ from any point $(2,-3)$ is
A. 0
B. 1
C. 2
D. 4

Answer: B
28. Let $A(1, k), B(1,1)$ and $C(2,1)$ be the vertices of
a right angled triangle with $A C$ as its
hypotenuse. If the area of the triangle is 1 , then the set of values which k can take is given by:
A. $\{1,3\}$
B. $\{0,2\}$
C. $\{-1,3\}$
D. $\{-3,-2\}$

Answer: C

- Watch Video Solution

29. The value of k such that
$3 x^{2}-11 x y+10 y^{2}-7 x+13 y+k=0$
may represent a pair of straight lines , is
A. 3
B. 4
C. 6
D. 8

Answer: B

D Watch Video Solution

30. Let $\mathrm{A}(2,-3)$ and $\mathrm{B}(-2,1)$ be the vertices of Δ
$A B C$. If the centroid of this triangle moves on
the line $2 x+3 y=1$ then the locus of the vertex
C is the line
A. $2 x+3 y=9$
B. $2 x-3 y=7$
C. $3 x+2 y=5$

D. $3 x-2 y=3$

Answer: A

D View Text Solution

31. Find the equation of the straight line passing through the point of intersection of the lines
$x-y+1=0$ and $2 x-3 y+5=0$ and at a distance $\frac{7}{5}$ from the point $(3,2)$

$$
\text { A. } 3 x-4 y+6=0 \text { and } 4 x-3 y+1=0
$$

B. $3 x+4 y+6=0$ and $4 x+3 y+1=0$
C. $3 x-4 y-6=0$ and $4 x+3 y+1=0$
D. None of the above

Answer: A

D Watch Video Solution

32. If the sides $B C, C A, A B$ of $\triangle A B C$ are respectively $x+2 y=1,3 x+y+5=0, x-y+2=$ 0 . Then, the altitude through B is
A. $x-3 y+1=0$
B. $x-3 y+4=0$
C. $3 x-y+4=0$
D. $x-y+2=0$

Answer: B

D Watch Video Solution

33. The equation of straight line passing
through $(-2,-7)$ and having an intercept of
length 3 between the straight lines : $4 x+3 y=$
$12,4 x+3 y=3$ are $:(A) 7 x+24 y+182=0$ (B) $7 x$
$+24 y+18=0(C) x+2=0(D) x-2=0$
A. $7 x-24 y-182=0$
B. $7 x+24 y+182=0$
C. $7 x+24 y-182=0$
D. None of the above

Answer: B

- Watch Video Solution

34. A variable straight line drawn through the point of intersection of lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ meets the co ordinates axes in A and B. Locus of the mid point of $A B$ is
A. $2 x y(a+b)=a b(x+y)$
B. $2 x y(a-b)=a b(x-y)$
C. $2 x y(a+b)=a b(x-y)$
D. None of the above

Answer: A
35. If non-zero numbers a, b and c are in HP,
then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point
A. $\left(1,-\frac{1}{2}\right)$
B. $(1,-2)$
C. $(-1,-2)$
D. $(-1,2)$

Answer: B
36. The vertices of a triangle are $(A(-1,-7), B(5,1), \quad$ and $C(1,4)$. The equation of the bisector of $\angle A B C$ is

$$
\begin{aligned}
& \text { A. } x+7 y-2=0 \\
& \text { B. } x-7 y-2=0 \\
& \text { C. } x-7 y+2=0
\end{aligned}
$$

D. None of these

- Watch Video Solution

37. If $\left(a, a^{2}\right)$ falls inside the angle made by the
lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to the interval

$$
\begin{aligned}
& \text { A. }\left(\frac{1}{2}, 3\right) \\
& \text { B. }\left(-3,-\frac{1}{2}\right) \\
& \text { C. }\left(0, \frac{1}{2}\right) \\
& \text { D. }(3, \infty)
\end{aligned}
$$

38. The equation of two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3$
$=0$ and its third side is passes through the point $(1,-10)$. The equation of the third side is
A. $x-3 y=-31$
B. $x-3 y=31$
C. $x+3 y=31$
D. $x+3 y=-31$

Answer: B

- Watch Video Solution

39. Let $P=(-1,0), Q(0,0)$ and
$R=(3,3 \sqrt{3})$ be three points. Then the equation of the bisector of the angle PQR is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

D Watch Video Solution

40. A straight line through the point $A(3,4)$ is
such that its intercept between the axes is bisected at A. Its equation is -
A. $4 x+3 y=24$
B. $3 x+4 y=25$
C. $x+y=7$
D. $3 x-4 y+7=0$

Answer: A

D Watch Video Solution

41. The straight lines $5 x+4 y=0, x+2 y-10=0$
and $2 x+y+5=0$ are
A. concurrent
B. the sides of an equilateral triangle
C. the sides of a right angled triangle
D. None of the above

Answer: A

- Watch Video Solution

42. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If
the point of intersection of the lines $4 a x+2 a y$
$+c=0$ and $5 b x+2 b y+d=0$ lie in the fourth
quadrant and is equidistant from the two axes, then

$$
\text { A. } 3 \mathrm{bc}-2 \mathrm{ad}=0
$$

$$
\text { B. } 3 b c+2 a d=0
$$

C. $2 b c-3 a d=0$

$$
\text { D. } 2 b c+3 a d=0
$$

Answer: A

D View Text Solution

43. Let $P Q R$ be a right angled isosceles
triangle, right angled at $P(2,1)$. If the equation of the line QR is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is
A.

$$
3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0
$$

B.

$$
3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0
$$

C.

$$
3 x^{2}-3 y^{2}-8 x y-20 x-10 y-25=0
$$

D.

$$
3 x^{2}-3 y^{2}+8 x y+20 x-10 y+25=0
$$

Answer: B

Bitsat Archives

1. The value of k such that the lines

$$
2 x-3 y+k=0,3 x-4 y-13=0 \quad \text { and }
$$

$8 x-11 y-33=0$ are concurrent is
A. 20
B. -7
C. 7
D. -20

Answer: B

D Watch Video Solution

2. Three straight lines

$$
2 x+11 y-5=0
$$

$$
24 x+7 y-20=0
$$

$$
4 x-3 y-2=0
$$

A. form a triangle
B. are only concurrent

C. are concurrent with one line bisecting

 the angle between the other two D. None of the above
Answer: C

D View Text Solution

3. The equation of the lines through ($(1,1)$ and making angles of 45° with the line $x+y=0$ are

$$
\text { A. } x-1=0, x-y=0
$$

$$
\begin{aligned}
& \text { B. } x-y=0, y-1=0 \\
& \text { C. } x+y-2=0, y-1=0 \\
& \text { D. } x-1=0, y-1=0
\end{aligned}
$$

Answer: D

D Watch Video Solution

4. The equation of the base $B C$ of an equilateral $\Delta \mathrm{ABC}$ is $\mathrm{x}+\mathrm{y}=2$ and A is $(2,-1)$.

The length of the side of the triangle is
A. $\sqrt{2}$
B. $\left(\frac{3}{2}\right)^{1 / 2}$
C. $\left(\frac{1}{2}\right)^{1 / 2}$
D. $\left(\frac{2}{3}\right)^{1 / 2}$

Answer: D

D Watch Video Solution

5. The foot of the perpendicular from the point $(3,4)$ on the line $3 x-4 y+5=0$ is
A. $\left(\frac{81}{25}, \frac{92}{25}\right)$
B. $\left(\frac{92}{25}, \frac{81}{25}\right)$
C. $\left(\frac{45}{26}, \frac{54}{24}\right)$
D. $\left(\frac{45}{26}, \frac{54}{26}\right)$

Answer: A

D Watch Video Solution

6. The equation of the bisector of the acute angle between the lines $3 x+4 y+5=0$ and $12 x$
$-5 y-7=0$, is
A. $21 x+77 y+100=0$
B. $99 x-27 y+30=0$
C. $99 x+27 y+30=0$
D. $21 x-77 y-100=0$

Answer: C

D View Text Solution
7. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio
A. 2:1
B. 1:2
C. 1:2 extenally
D. None of the above

Answer:

D Watch Video Solution

8. The condition that the straight line joining
the origin to the points of intersection of the
line $4 x+3 y=24$ with the circle $(x-3)^{2}+(y-4)^{2}=25$
A. are coincident
B. are perpendicular
C. make equal angle with X -axis
D. None of the above

Answer: B

D View Text Solution
9. Two opposite vertices of a rectangle are (1,
$3)$ and $(5,1)$. If the equation of a diagonal of
this rectangle is $y=2 x+c$. Then, the value of c is
A. -1
B. -3
C. -4
D. -9

Answer: C
10. The transformed equation of
$3 x^{2}+3 y^{2}+2 x y-2=0 \quad$ when the
coordinats axes are rotated through an angle of 45°, is
A. $x^{2}+2 y^{2}=1$
B. $2 x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=1$
D. $x^{2}+3 y^{2}=1$

Answer: B

- Watch Video Solution

11. If I, m, n are in $A P$, then the line $I x+m y+n=0^{`}$
will always pass through the point
A. $(-1,2)$
B. $(1,-2)$
C. $(1,2)$
D. $(2,1)$

Answer: B

D Watch Video Solution

12. If a vertex of a triangle is $(1,1)$ and the midpoints of two side through this vertex are (-1 , $2)$ and (3, 2), then centroid of the triangle is
A. $\left(1, \frac{7}{3}\right)$
B. $\left(\frac{1}{3}, \frac{7}{3}\right)$
C. $\left(-\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(-1, \frac{7}{3}\right)$

Answer: A

- Watch Video Solution

13. The equations to the sides of a triangle are
$x-3 y=0,4 x+3 y=5 \quad$ and $\quad 3 x+y=0$.
The line $3 x-4 y=0$ passes through
A. the incentre
B. the centroid
C. the orthocentre
D. the circumcentre

- Watch Video Solution

14. If ($0,-1$) and (0,3) are two opposite vertices
of a square, then the other two vertices are
A. $(0,1),(0,-3)$
B. $(3,-1),(0,0)$
C. $(2,1),(-2,1)$
D. $(2,2),(1,1)$

Answer: C

D Watch Video Solution

15. The equation to the line bisecting the joining of $(3 .-4)$ and $(5,2)$ having its intercepts on X -axis and Y -axis in the ratio 2:1, is
A. $x+y-3=0$
B. $2 x-y=9$
C. $x+2 y=2$

$$
\text { D. } 2 x+y=7
$$

Answer: C

D Watch Video Solution

16. The circumcentre of the triangle formed by
the lines $x y+2 x+2 y+4=0 \quad$ and
$x+y+2=0$ is
A. $(-1,-1)$
B. $(0,-1)$

C. $(1,1)$

D. $(-1,0)$

Answer: A
(D) Watch Video Solution

