©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

SEQUENCES AND SERIES

Practice Exercise

1. The number of numbers lying between 100 and 500 which are divisible by 7 but not by 21 is
A. 57
B. 19
C. 38
D. 40
2. Let S_{n} denotes the sum to terms of an A.P. whose first term is a . If the commom difference d is given by $d=S_{n}-k S_{n-1}+S_{n-2}$, then k is equal to
A. 3
B. 2
C. 5
D. 7

Answer: B

Watch Video Solution
3. The sum upto n terms of the sequence $\log \mathrm{a}, \log \mathrm{ar}, \log a r^{2}, \ldots$. Is
A. $\frac{n}{2} \log a^{2} r^{n-1}$
B. $\frac{n}{2} \log a r^{n-1}$
C. $\frac{3 n}{2} \log a r^{n-1}$
D. $\frac{5 n}{2} \log a^{2} r^{n-1}$

Answer: A

- Watch Video Solution

4. If m times the m th term of an A.P. with non-zero common difference equals n times the nth term of the A.P., where $m \neq n$, then ($\mathrm{m}+\mathrm{n}$)th term of this A.P. is
A. $m n$
B. zero
C. $2 m n$
D. None

Answer: B

D Watch Video Solution

5. Let T_{r} be the rth term of an AP, for $r=1,2, .$. If for some positive integers m and n , we have $T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, the T_{m+n} equals
A. $\frac{1}{m}$
B. $\frac{1}{m}+\frac{1}{n}$
C. 1
D. None

Answer: C

- Watch Video Solution

6. The first second, and middle terms of an AP are a, b, c respectively. Then , their sum is equal to
A. $\frac{2(c-a)}{b-a}$
B. $\frac{2 c(c-a)}{b-a}+c$
C. $\frac{2 c(b-a)}{c-a}$
D. None of these

Answer: B

- Watch Video Solution

7. Find the number of common terms to the two sequences $17,21,25, \ldots, 417$ and $16,21,26, . . ., 466$.
A. 21
B. 19
C. 20
D. 91

Answer: C

8. The least value of a for which $5^{1+x}+5^{1-x}, a / 2,25^{x}+25^{-x}$ are three consecutive terms of an A.P., is
A. 10
B. 5
C. 12
D. None of these

Answer: C

- Watch Video Solution

9. Let $a_{1}, a_{2}, a_{3}, \ldots$. Be in AP with common difference not multiple of 3 . Then, the maximum number of consecutive terms so that all are prime number, is
A. 2
B. 3
C. 5
D. infinite

Answer: D

- View Text Solution

10. If $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-7 / 2\right)$ are in AP then x is equal to:
A. 2
B. 3
C. 4
D. 2, 3

Answer: D

11. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, where a, b, c are independent of n, then $a=0$ common difference of A.P. must be $2 b$ common difference of A.P. must be $2 c$ first term of A.P. is $b+c$
A. $a \neq 0$
B. $d \neq 3 b$
C. $d=2 c$
D. first term of an AP is b-c

Answer: C

- Watch Video Solution

12. A fanner buys a used tractor for Rs 12000 . He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12\% interest on the unpaid amount. How much will the tractor cost him?
A. Rs. 16680
B. Rs. 16670
C. Rs. 16681
D. Rs. 16682

Answer: A

- Watch Video Solution

13. In a G.P. of positive terms if any terms is equal to the sum of next tow terms, find the common ratio of the G.P.
A. $\sin 18^{\circ}$
B. $2 \cos 18^{\circ}$
C. $\cos 18^{\circ}$
D. $2 \sin 18^{\circ}$

Answer: D

14. Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. then $P^{2} R^{3}: S^{3}$ is equal to $1: 1$ (b) $(\text { commonratio })^{n}: 1\left(\text { Firserm }^{2}\right)^{2}(\text { commonratio })^{2}$ (d) None of these
A. 1:1
B. (common ratio) ${ }^{n}: 1$
C. (first term) $)^{2}:(\text { common ratio })^{2}$
D. None of the above

Answer: A

Watch Video Solution

15. The sum of three numbers in GP. Is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
A. $8,16,32$
B. $8,16,30$
C. $16,0,30$
D. $32,16,9$

Answer: A

- Watch Video Solution

16. Find the value of $\left(320(32)^{1 / 6}(32)^{1 / 36} \infty\right.$.
A. 16
B. 64
C. 32
D. 0

Answer: B

17. If S denotes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$, such that $S-S_{n}<\frac{1}{1000}$, then the least value of n is 8 b .9 c .10 d .11
A. 8
B. 9
C. 10
D. 11

Answer: D

- Watch Video Solution

18. Let a_{n} be the nth term of a G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha a n d \sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \neq \beta$, then the common ratio is α / β b. β / α c. $\sqrt{\alpha / \beta}$ d. $\sqrt{\beta / \alpha}$
A. $\frac{\alpha}{\beta}$
B. $\frac{\beta}{\alpha}$
C. $\left(\frac{\alpha}{\beta}\right)^{1 / 2}$
D. $\left(\frac{\beta}{\alpha}\right)^{1 / 2}$

Answer: B

D Watch Video Solution

19. Let S_{1}, S_{2}, Be squares such that for each $n \geq 1$ the length of a side of S_{n} equals the lengths of a diagonal of S_{n+1}. If the length of a sides of S_{1} is 10 cm , then for which of the following values of n is the area of S_{n} less than 1 square cm ?
A. 7
B. 8
C. 9
D. 10

Answer: B

- Watch Video Solution

20. If one GM, g and two AM's, p and q are inserted between two numbers a and b, then $(2 p-q)(p-2 q)$ is equal to
A. g^{2}
B. $-g^{2}$
C. 2 g
D. $3 g^{2}$

Answer: B

D View Text Solution

21.

$1 / \mathrm{a}+1 / \mathrm{b}=(\mathrm{x}+\mathrm{y}) / 6(B) \mathrm{ax}+\mathrm{cy}=\mathrm{b}(C) \mathrm{a} / \mathrm{x}+\mathrm{c} / \mathrm{y}=2(D) 1 / \mathrm{x}+1 / \mathrm{y}=2 / \mathrm{b}$
A. $\frac{a}{x}+\frac{c}{y}=2$
B. $\frac{a}{x}+\frac{2 c}{y}=\frac{c}{2 a}$
C. $\frac{1}{x}+\frac{1}{y}=\frac{3}{b}$
D. $\frac{2}{x}+\frac{1}{2 y}=\frac{3}{a c}$

Answer: A

- Watch Video Solution

22. If $x, y z$ are positive integers, then $(x+y)(y+z)(z+x)$, is
A. $=8 x y z$
B. $>8 x y z$
C. $<8 x y z$
D. $=4 x y z$

Answer: B

23. The minimum value of the expression $3^{x}+3^{-1-x}, x \in R$ is $a \sqrt{b}$ then $a+b=($ where a, b are in lowest form)
A. 0
B. $\frac{1}{3}$
C. 3
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

24. If A_{1}, A_{2} be two A.M.'s and G_{1}, G_{2} be two G.M.,s between a and b, then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to
A. $\frac{a+b}{2 a b}$
B. $\frac{2 a b}{a+b}$
C. $\frac{a+b}{a b}$
D. $\frac{a+b}{\sqrt{a b}}$

Answer: C

- Watch Video Solution

25. If a, b, c are in G.P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
A. GP
B. $A P$
C. HP
D. None of these

Answer: B

26. If the sum to infinty of the series, $1+4 x+7 x^{2}+10 x^{3}+\ldots$, is $\frac{35}{16}$, where $|x|<1$, then ' x ' equals to
A. $2 / 5$
B. $1 / 5$
C. $3 / 5$
D. None of these

Answer: B

Watch Video Solution

27. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P., then $\left|\cos x \frac{\sec (y)}{2}\right|$ equals
A. $\pm \sqrt{2}$
B. $\pm 1 / \sqrt{2}$
C. ± 2
D. None of the above

Answer: A

- Watch Video Solution

28. If $A M, G M$ and $H M$ of first and last terms of the series $25,26,27, \ldots, N$ 1 N are the terms of the series, then find the value of N .
A. 25
B. 225
C. 1225
D. None of the above

Answer: C

Bitsat Archives

1. If p, q, r and s are positive real numbers such that $p+q+r+s=2$, then $M=(p+q)(r+s)$ satisfies the relation, when (A) $0<M \leq 1$ (B) $1 \leq M \leq 2$.(C) $2 \leq M \leq 3$ (D) $3 \leq M \leq 4$
A. $0<M \leq 1$
B. $1 \leq M \leq 2$
C. $2 \leq M \leq 3$
D. $3 \leq M \leq 4$

Answer: A

Watch Video Solution
2. Sum of the series $1+2.2+3.2^{2}+4.2^{3}+\ldots+100.2^{99}$ is
A. $100 \cdot 2^{100}+1$
B. $99.2^{100}+1$
C. $99.2^{99}-1$
D. $100.2^{100}-1$

Answer: B

- Watch Video Solution

3. Find the sum to n terms of the series $5+55+555+\ldots$
A. $\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)+n}{9}\right]$
B. $\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
C. $\frac{5}{9}\left[\frac{10\left(10^{n+1}-1\right)}{9}-n\right]$
D. $\frac{5}{9}\left[\frac{10\left(10^{n-1}-1\right)}{9}-n\right]$

Answer: B

4. If a, b c are in GP and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
A. AP
B. GP
C. HP
D. None of these

Answer: A

5. The sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots$ Is equal to
(a) $2^{n}-n-1$
(b) $1-2^{-n}$
(c) $2^{-n}+n-1$
(d) $2^{n}-1$
A. $n-1+2^{-n}$
B. 1
C. n-1
D. $1+2^{-n}$

Answer: A

- Watch Video Solution

6. The sum of $0.2+0.22+0.222+\ldots$ to n terms is equal to
A. $\left(\frac{2}{9}\right)-\left(\frac{2}{81}\right)\left(1-10^{-n}\right)$
B. $n-\left(\frac{1}{9}\right)\left(1-10^{-n}\right)$
C. $\left(\frac{2}{9}\right)\left[n-\left(\frac{1}{9}\right)\left(1-10^{-n}\right)\right]$
D. $\frac{2}{9}$

Answer: C

7. If $A M$ and $H M$ between two numbers are 27 and 12 respectively, then their GM is
A. 9
B. 18
C. 24
D. 36

Answer: B

- Watch Video Solution

8. The value of $\frac{2}{1!}+\frac{2+4}{2!}+\frac{2+4+6}{3!}+\ldots$ is
A. e
B. $2 e$
C. 3 e
D. None of these

Answer: C

- Watch Video Solution

9. IF $a_{1}, a_{2}, a_{3}, \ldots . a_{10}$ be in AP and $h_{1}, h_{2}, h_{3}, \ldots . h_{10}$ be in HP. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then find value of $a_{4} h_{7}$.
A. 2
B. 3
C. 5
D. 6

Answer: D
10. Let n is a rational number and x is a real number such that $|\mathrm{x}| \mid \mathrm{t} 1$, then $(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2)}{3!} . x^{3}+\ldots$
This can be used to find the sum of different series.
Q. Sum of infinite series
$1+\frac{2}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{5}{8} \cdot \frac{1}{2^{2}}+\frac{2}{3} \cdot \frac{5}{6} \cdot \frac{8}{9} \cdot \frac{1}{2^{3}}+\ldots \infty$ is
A. $2^{1 / 3}$
B. $4^{1 / 3}$
C. $8^{1 / 3}$
D. $2^{1 / 5}$

Answer: B

- Watch Video Solution

11. The $H M$ of two numbers is 4 . If their arithmetic mean A and geometric mean G satisfy the relation $2 A+G^{2}=27$, then the numbers are
A. 2, 6
B. 3,6
C. 1,3
D. 1, 2

Answer: B

- Watch Video Solution

12. For any integer $n \geq 1$, the sum $\sum_{k=1}^{n} k(k+2)$ is equal to
A. $\frac{n(n+1)(n+2)}{6}$
B. $\frac{n(n+1)(n+1)}{6}$
C. $\frac{n(n+1)(2 n+7)}{6}$
D. $\frac{n(n+1)(2 n+9)}{6}$

Answer: C

13. In $\triangle A B C$, if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$, then C is equal to
A. 90°
B. 60°
C. 45°
D. 30°

Answer: B

- Watch Video Solution

14. What is the sum of n terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots$
.?
A. 300
B. $200 \sqrt{2}$
C. $300 \sqrt{2}$
D. $250 \sqrt{2}$

Answer: C

- Watch Video Solution

15. Find the sum of the series $1.3^{2}+2.5^{2}+3.7^{2}+\ldots+$ to n terms
A. $\frac{n}{6}(n+1)\left(6 n^{2}+14 n+7\right)$
B. $\frac{n}{6}(n+1)(2 n+1)(3 n+1)$
C. $4 n^{3}+4 n^{2}+n$
D. None of the above

Answer: A

16. If $a=\log _{2} 3, b=\log _{2} 5$ and $c=\log _{7} 2$, then $\log _{140} 63$ in terms of a, b, c is
A. $\frac{2 a c+1}{2 c+b c+1}$
B. $\frac{2 a c+1}{2 a+c+a}$
C. $\frac{2 a c+1}{2 c+a b+a}$
D. None of these

Answer: D

- Watch Video Solution

17. When 2^{31} is divided by 5 the remainder is
A. 4
B. 8
C. 2
D. 6

Answer: C

- Watch Video Solution

18. Let α, β, γ and δ be four positive real numbers such that their product is unity, then the least value of $(1+\alpha)(1+\beta)(1+\gamma)(1+\delta)$ is
A. 6
B. 16
C. 0
D. 32

Answer: B

