

MATHS

BOOKS - BITSAT GUIDE

SETS, RELATIONS AND FUNCTIONS

Practice Exercise

1. The number of proper subsets of $\{1,2,3\}$ is

A. 8

B. 7

C. 6

D. 5

Answer: B

 $\mathsf{C}.\,(A\cup B)-(A\cap B)$

$$\mathsf{D}.\,(A-B)\cap(B-A)$$

Answer: C

Watch Video Solution

3. Let $A = \{x : x \text{ is a prime factor of } 240\}$, $B = \{x : x \}$

is the sum of any two prime factors of $\Box 240$ }, then

A. 5 $\swarrow A \cap B$

 $\texttt{B.7} \in A \cap B$

 $\mathsf{C.8} \in A \cap B$

 $\texttt{D.}\,8\in A\cup B$

Answer: D

4. If $A = \{x : x ext{ is a multiple of 4 and x } \in N\}$ and $B = \{x : x ext{ is a multiple of 6 and x } \in N\}$, then $A \cap B$ consists of all multiples of

A. 16

B. 12

C. 8

D. 4

Answer: B

5. If A and B are two sets, then $(A \cup B)' \cup (A' \cap B)$

is equal to

A. A'

B.A

С. В

D. None of these

6. $IfX=\{8^n-7n-1\colon n\in N)\ ext{and}$ $Y=\{49(n-1)\colon n\in N\},\ ext{then}$ A. $X\subset Y$ B. $Y\subset X$

C. X=Y

D. None of these

7. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy news-paper C. 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three mewspapers, find the number of families which buy (i) A only

A. 3100

B. 3300

C. 2900

D. 1400

Martin Martin Collision

Answer: B

8. If X and Y are two sets, then $X \cap (Y \cup X)$ equals

A. X

B. Y

 $\mathsf{C}.\,\varphi$

D. None of these

Answer: C

9. Which of the following cannot be the number of

elements in the power set of any finite set?

A. 26

B. 32

C. 64

D. 128

10. If $A=\left\{x\!:\!x^2=1
ight\}$ and $B=\left\{x\!:\!x^4=1
ight\}$, then $A\Delta B$ is equal to

A.
$$\{-i, i\}$$

B. $\{-1, 1\}$
C. $\{-1, 1, i, -i\}$
D. $\{1, 1\}$

11. A survey show that 63% of the Indians like cheese whereas 76% like apples. If x% of the Indians like both cheese and apples, then find the range of x.

A. x=39

B. x=63

C. $39 \leq x \leq 63$

D. None of these

Answer: C

12. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The value of m and n is

A. 7,6

B. 6,3

C. 5,1

D. 8,7

Answer: B

13. Let U be the universal set for sets A and B such

that

 $n(A) = 200, n(B) = 300 \text{ and } n(A \cap B) = 100.$

then $n(A^{\,\prime}\,\cap B^{\,\prime})$ is equal to 300, $\,$ provided that n(U)

is equal to

A. 600

B. 700

C. 800

D. 900

Answer: B

14. Let A and B be two sets that $A \cap X = B \cap X = \phi$ and $A \cup X = B \cup X$ for some set X. then

A. A=B

B. A=X

C. B=X

 $\mathsf{D}.\, A\cup B=X$

15. If
$$f(x) = \cos(\log x)$$
, then $f(x)f(y) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(xy)\right]$ =

A. 0

B.
$$rac{1}{2}f(x)f(y)$$

C. $f(x+y)$

D.
$$f(x - y)$$

16. Let U be the universal set and $A\cup B\cup C=U$. Then $\{(A-B)\cup (B-C)\cup (C-A)\}$ is equal to -

A. $A \cup B \cup C$

 $\texttt{B.}\, A \cup (B \cap C)$

 $\mathsf{C}.\,A\cap B\cap C$

 $\mathsf{D}.\,A\cap (B\cap C)$

Answer: C

17. If $A = \{1, 2, 3\}$ and $B = \{3, 6, 8\}$, then $(A \cap B) \times A$ is equal to A. $\{(1, 3), (2, 3), (3, 3)\}$ B. $\{(3, 1), (3, 2), (3, 3)\}$ C. $\{(1, 3), (3, 1)(3, 2)\}$ D. None of these

Answer: B

18. Let R be a relation defined by $R = \{(1,3), (2,4), (5,1)\}$ on the set of natural number N. Then R^{-1} is equal to

A.
$$\{(3, 1), (4, 2), (1, 5)\}$$

B.
$$\{(5,1),(4,2),(1,3)\}$$

C.
$$\{(5, 1), (2, 4), (1, 3)\}$$

D. None of these

19. Let A and B be two finite sets having m and n elements respectively. Then the total number of mappings from A to B is

A. mn

 $\mathsf{B.}\,2^{mn}$

 $\mathsf{C}.\,m^n$

D. n^m

Answer: D

20. The function $f: N \rightarrow N, N$ being the set of of natural numbers, defined by f(x)=2x+3 is

A. surjective

B. injective but not surjective

C. injective

D. None of these

Answer: B

21. Let R be the real line. Consider the following subsets of the plane $R \times R$ $S = \{(x, y) : yx + 1 \text{ and } 0 < x < 2\}$ and $T = \{(x, y) : x - y \text{ is an integer}\}$. Which one of the following is true?

A. T is an equivalence relation on R but S is not
B. Neither S nor T is an equivalence relation on R
C. Both S and T are equivalence relations on R
D. S is an equivalence relation on R but T is not

22. A natural number a is said to be related to another

natural number b, if |a - b| < 4. The relation is

A. reflexive and symmetric

B. reflexive and transitive

C. symmetric and transitive

D. None of these

23. If $A = \{0, 1, 2, 3, 4, 5\}$ and a relation R defined by (x)R(y), where 2x + y = 10. Then R^{-1} is

A.
$$\{(3, 4), (4, 2), (5, 0)\}$$

 $\texttt{B.} \left\{ (4,3), (4,2), (5,0) \right\}$

$$\mathsf{C}.\,\{(4,3),\,(4,2),\,(5,0)\}$$

D.
$$\{(4,3),(2,4),(0,5)\}$$

Answer: D

24. Given the relation $R = \{(1, 2)(2, 3)\}$ on the set $A = \{(1, 2, 3)\}$ the minimum number of ordered pairs which when added to R make it an equivalence relation is

A. 5

B. 6

C. 7

D. 8

Answer: C

25. Let $A=\{1,2,3,4,5\}$ and R be a relation defined by $R=\{(x,y),x,y\in A,x+y=5\}.$ Then R is

A. reflexive and symmetric but not transitive

- B. an equivalence relation
- C. symmetric but neither reflexive nor transitive
- D. neither reflexive nor symmetric but transitive

Answer: C

26. Write the domain of the relation R defined on the

set Z of integers as follows:

 $(a,\ b)\in R\Leftrightarrow a^2+b^2=25$

A. $\{3, 4, 5\}$

 $\mathsf{B}.\,\{0,\,3,\,4,\,5\}$

C. $\{0, \pm 3, 4, \pm 5\}$

D. None of these

Answer: C

A.
$$[\,-3,\ -2.5)\cup(\,-2.5,2]$$

$$\mathsf{B}.\,[\,-2,0)\cup(0,1]$$

 $\mathsf{C}.\left[0,1\right]$

D. None of these

Answer: B

28. The range of the function $f(x) = rac{x-2}{2-x}$ is

A. R

 $\mathsf{B}.\,R-\{1\}$

D.
$$R - \{ -1 \}$$

Answer: C

Watch Video Solution

29. The function
$$f(x) = (\log) \frac{1+x}{1-x}$$
 satisfy the equation

A.
$$f(x_1).$$
 $f(x)_2 = f(x_1 + x_2)$
B. $f(x+2) - 2f(x+1) + f(x) = 0$
C. $f(x) + f(x+1) = f(x^2 + x)$

D.
$$f(x_1) + f(x_2) = f rac{x_1 + x_2}{1 + x_1 x_2}$$

Answer: D

30. Let f : R - {n} $~\rightarrow~$ R be a function defined by

$$f(x)=rac{x-m}{x-n}$$
 , where $m
eq n$. Then,

A. f is one-one and onto

B. f is one-one and into

C. f is many-one and onto

D. f is many-one and into

Answer: B

31. If
$$f:[1,\infty) \to [2,\infty)$$
 is given by $f(x) = x + rac{1}{x}$ then f^{-1} (x) equals:

A.
$$rac{x+\sqrt{x^2-4}}{2}$$

B. $rac{x}{1+x^2}$
C. $rac{x-\sqrt{x^2-4}}{2}$
D. $1+\sqrt{x^2-4}$

32. The mapping f : N o N given by $f(n) = 1 + n^2, n \in N$, where N is the set of natural numbers, is

A. one-one and onto

B. onto but not one-one

C. one-one but not onto

D. Neither one-one nor onto

Answer: C

Watch Video Solution

33. If $f\!:\!R o R,\,f(x)=x^2$, then f is

A. injective but not surjective

B. surjective but not injective

C. bijective

D. None of the above

Answer: D

Watch Video Solution

34. Let $g(x) = x^2 - 4x - 5$ then

A.g is one-one on R

B. g is one-one on $(\,-\infty,\,2)$

C. g is not one-one on $(\,-\infty,\,4)$

D. None of the above

Answer: B

 $C. 2^n - 1$

D. None of these

Answer: B

Watch Video Solution

36. Given
$$f(x)=\log_{10}igg(rac{1+x}{1-x}igg) ext{ and } g(x)=rac{3x+x^3}{1+3x^2}, ext{ then }$$

fog(x) equals

A. -f(x)

B. 3f(x)

 $\mathsf{C}.\left[f(x)\right]^{3}$

D. None of these

Answer: B

37. Let
$$f(x) = (x + 1)^2 - 1$$
, $(x \ge -1)$ then the set
S={x:f (x) = f^{-1} (x)} is
A. 0, -1 , $\frac{-3 + i\sqrt{3}}{2}$, $\frac{-3 - i\sqrt{3}}{2}$
B. {0, 1, -1 }
C. {0, -1 }

D. empty

Answer: C

38. A ral valued functin f(x) satisfies the functional equation f(x - y) = f(x)f(y) - f(a - x)f(x + y) where 'a' is a given constant and f(0) = 1, f(2a - x) is equal to :

A.
$$f(-x)$$

B. $f(a) + f(a - x)$
C. $f(x)$
D. $-f(x)$

Answer: D

39. If the function $f\colon [1,\infty) o [1,\infty)$ is defined by $f(x) = 2^{x\,(x-1)}$ then f^{-1} is

A.
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

B. $\frac{1}{2}\left(1 + \sqrt{1 + 4\log_2 x}\right)$
C. $\frac{1}{2}\left(1 - \sqrt{1 - 4\log_2 x}\right)$

D. Not defined

Answer: B

40. If
$$f\!:\!R o (\,-\infty,1)$$
 such that $f(x)=1-2^{-x}$ then $f^{-1}(x)$ is

- A. $1 + \log_2(-x)$
- $\texttt{B.} 1 \log_2(x)$
- $\mathsf{C}.\log_2(1-x)$

$$\mathsf{D}.-\log_2(1-x)$$

Answer: D

Watch Video Solution

41. Let a binary operation * on Q (set of all rational numbers) be defined by a * b=a+2b for all a,b $\in Q$. Then,

A. Q is closed under the given operation

B. the given operation is commutative

C. the given operation is associative

D. Q is not closed under the given operation

Answer: A

View Text Solution

42. Let Z be the set of integers and * be a binary operation of Z defined as a*b=a+b-ab for all a, b $\in Z$. The inverse of an element $a(
eq 1) \in Z$ is

A.
$$\frac{a}{a-1}$$

B. $\frac{a}{1-a}$
C. $\frac{a-1}{a}$

D. None of the above

Answer: A

Bitsat Archives

1. If f (x) is an odd periodic function with period 2, then f (4) equals

A. - 4

B. 4

C. 2

D. 0

Answer: D

2. Let R= {(3, 3),(6,6), (9,9), (12, 12),(6, 12),(3,9), (3, 12), (3,

6)} be a relation on the set A={3,6,9,12}. The relation is:

A. an equivalence relation

B. reflexive and symmetric

C. reflexive and transitive

D. only reflexive

3. The total number of subsets of a finite set A has 56 more elements than the total number of subsets of another finite set B. What is the number of elements in the set A?

A. 5

B. 6

C. 7

D. 8

Answer: B

4. Let R be the relation on the set R of all real numbers defined by a Rb Iff $|a-b| \leq 1$. Then R is

A. reflexive and symmetric only

B. reflexive and transitive only

C. equivalence

D. None of the above

Answer: A

$${f 5.}\,A=ig\{x\in C\!:\!x^4-1=0ig\}$$
 $B=ig\{x\in C\!:\!x^2-1=0ig\}$

$$C=ig\{x\in C\!:\!x^2+1=0ig\}$$

where, C is complex plane. Then,

A.
$$A=B\cup C$$

$$\mathsf{B}.\, C = A \cap B$$

$$\mathsf{C}.\,B=A\cap C$$

D.
$$A=B\cap C$$

Answer: A

View Text Solution

6. The function $f:(-\infty, -1)\overrightarrow{0, e^5}$ defined by $f(x)=e^x \hat{\ } (3-3x+2)$ is many one and onto

many one and into one-one and onto one-one and

into

A. many-one and onto

B. many-one and into

C. one-one and onto

D. one-one and into

Answer: D

7. If the domain of the function $f(x) = x^2 - 6x + 7$ is $(-\infty,\infty)$, then the range of the function is

A.
$$(\,-\infty,\infty)$$

B. $[\,-2,\infty)$
C. $(\,-2,3)$
D. $(\,-\infty,\,-2)$

Watch Video Solution

8. Let $f\colon R o R, g\colon R o R$ be two functions given by $f(x)=2x-3, g(x)=x^3+5.$ Then $(fog)^{-1}$ is equal to

A.
$$rac{x+7^{1/3}}{2}$$

B.
$$x - \frac{7^{1/2}}{2}$$

C. $\frac{x - 2^{1/3}}{7}$
D. $\frac{x - 7^{1/3}}{2}$

Answer: D

9. The inverse of the function
$$\frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$
 is

A.
$$\log_{10}(2-x)$$

B. $rac{1}{2} \log_{10} rac{1+x}{1-x}$
C. $rac{1}{2} \log_{10}(2x-1)$

D.
$$rac{1}{4} \mathrm{log}_{10} \, rac{2x}{2-x}$$

Answer: B

Watch Video Solution

n(U)=700, n(A)=200, n(B)=300, $n(A\cap B)=100$, then $n(A'\cap B')$ is equal to

A. 300

B. 350

C. 400

D. 500

11. Let f be a function with domain [-3, 5] and let g (x) = |3x + 4|, Then the domain of (fog) (x) is

A. 3,
$$-\frac{1}{3}$$

B. 3, $\frac{1}{3}$
C. $-3, \frac{1}{3}$
D. $-3, -\frac{1}{3}$

12. If $f \colon R o R$ and $g \colon R o R$ are difined by f(x)=|x| and g(x)=[x-3] for $x\in R$, then $g(f(x))\colon -rac{8}{5} < x < rac{8}{5}$ is equal to A. $\{0, 1\}$ B. {1, 2} C. $\{-3, -2\}$ D. {2, 3}

Answer: C

Watch Video Solution

13. Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a

relation on the set $A=\{1,2,3,4\}$. Then relation R is

A. a function

B. transitive

C. not symmetric

D. reflexive

14. Let A = [-1,1] and $f \colon A o A$ be defined as f(x) = x |x| for all $x \in A$, then f(x) is

A. many-one and into function

B. one-one and into function

C. many-one and into function

D. one-one and onto function

Answer: D

15. If universal set
$$U = \{x \mid x^5 - 6x^4 + 11x^3 - 6x^2 = 0\}$$
 $A = \{x \mid x^2 - 5x + 6 = 0\}$ and $B = \{x \mid x^2 - 3x + 2 = 0\}$ Then, $(A \cap B)$ is equal to

A. $\{1, 3\}$

B. $\{1, 2, 3\}$

 $\mathsf{C}.\,\{0,\,1,\,3\}$

D. $\{0, 1, 2, 3\}$

16. Which of the following statements is not correct for the relation R defined by aRb if and only if b lives within one kilometre from a?

A. R is reflexive

B. R is symmetric

C. R is not anti-symmetric

D. None of these

17. Range of the function $f(x) = rac{x^2}{x^2+1}$ is

A. (-1,0)

B. (-1,1)

C. [0,1)

D. (1,1)

Answer: C

18. $x^2 = xy$ is a relation which is

A. symmetric

B. reflexive and transitive

C. transitive

D. None of these

Answer: C

Watch Video Solution

19. If
$$f(x) = ax^2 + bx + c$$
 and $g(x) + px^2 + qx$ with $g(1) = f(1) \ g(2) - f(2) = 1 \ g(3) - f(3) = 4$ then $g(4) - f(4)$ is

B. 5

C. 6

D. None of these

Answer:

