đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

SETS, RELATIONS AND FUNCTIONS

Practice Exercise

1. The number of proper subsets of $\{1,2,3\}$ is
A. 8
B. 7
C. 6
D. 5

Answer: B

- Watch Video Solution

2. Which one of the following is
$(A-B) \cup(B-A) ?$
A. $(A \cup B) \cup(A-B)$
B. $(A \cup B) \cup(A \cap B)$
C. $(A \cup B)-(A \cap B)$
D. $(A-B) \cap(B-A)$

Answer: C

- Watch Video Solution

3. Let $A=\{x: x$ is a prime factor of 240$\}, B=\{x: x$ is the sum of any two prime factors of $\square 240\}$, then
A. $5 \not \subset A \cap B$
B. $7 \in A \cap B$
C. $8 \in A \cap B$
D. $8 \in A \cup B$

D View Text Solution

4. If $A=\{x: x$ is a multiple of 4 and $\mathrm{x} \in N\}$ and $B=\{x: x$ is a multiple of 6 and $\mathrm{x} \in N\}$, then $A \cap B$ consists of all multiples of
A. 16
B. 12
C. 8
D. 4

- Watch Video Solution

5. If A and B are two sets, then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$
is equal to
A. A'
B. A
C. B
D. None of these

Answer: A
6. $\operatorname{If} X=\left\{8^{n}-7 n-1: n \in N\right)$ and
$Y=\{49(n-1): n \in N\}$, then
A. $X \subset Y$
B. $Y \subset X$
C. $X=Y$
D. None of these

Answer: A
(D) Watch Video Solution
7. In a town of 10,000 families it was found that 40%
families buy newspaper A, 20\% families buy newspaper B and 10\% families buy news-paper C. 5\% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three mewspapers, find the number of families which buy (i) A only
A. 3100
B. 3300
C. 2900
D. 1400

Answer: B
8. If X and Y are two sets, then $X \cap(Y \cup X)$ equals
A. X
B. Y
C. φ
D. None of these

Answer: C
(D) Watch Video Solution
9. Which of the following cannot be the number of elements in the power set of any finite set ?
A. 26
B. 32
C. 64
D. 128

Answer: A

D Watch Video Solution
10. If $A=\left\{x: x^{2}=1\right\}$ and $B=\left\{x: x^{4}=1\right\}$, then
$A \Delta B$ is equal to
A. $\{-i, i\}$
B. $\{-1,1\}$
C. $\{-1,1, i,-i\}$
D. $\{1,1\}$

Answer: A

D Watch Video Solution
11. A survey show that 63% of the Indians like cheese whereas 76% like apples. If $\mathrm{x} \%$ of the Indians like both cheese and apples, then find the range of x.
A. $x=39$
B. $x=63$
C. $39 \leq x \leq 63$
D. None of these

Answer: C
12. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The value of m and n is
A. 7,6
B. 6,3
C. 5,1
D. 8,7

Answer: B
13. Let U be the universal set for sets A and B such
that
$n(A)=200, n(B)=300$ and $n(A \cap B)=100$.
then $n\left(A^{\prime} \cap B^{\prime}\right)$ is equal to 300 , provided that $n(U)$
is equal to
A. 600
B. 700
C. 800
D. 900

Answer: B
14. Let A and B be two sets that
$A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X \quad$ for
some set X. then
A. $A=B$
B. $A=X$
C. $B=X$
D. $A \cup B=X$

Answer: A
15. If $f(x)=\cos (\log x)$,
$f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=$
A. 0
B. $\frac{1}{2} f(x) f(y)$
C. $f(x+y)$
D. $f(x-y)$

Answer: A

D Watch Video Solution
16. Let U be the universal set and $A \cup B \cup C=U$.

Then $\{(A-B) \cup(B-C) \cup(C-A)\}$ is equal to -
A. $A \cup B \cup C$
B. $A \cup(B \cap C)$
C. $A \cap B \cap C$
D. $A \cap(B \cap C)$

Answer: C
17. If $A=\{1,2,3\}$ and $B=\{3,6,8\}$, then $(A \cap B) \times A$ is equal to
A. $\{(1,3),(2,3),(3,3)\}$
B. $\{(3,1),(3,2),(3,3)\}$
C. $\{(1,3),(3,1)(3,2)\}$
D. None of these

Answer: B
18. Let R be a relation defined by
$R=\{(1,3),(2,4),(5,1)\}$ on the set of natural number N . Then R^{-1} is equal to
A. $\{(3,1),(4,2),(1,5)\}$
B. $\{(5,1),(4,2),(1,3)\}$
C. $\{(5,1),(2,4),(1,3)\}$
D. None of these

Answer: A
19. Let A and B be two finite sets having m and n elements respectively. Then the total number of mappings from A to B is
A. $m n$
B. $2^{m n}$
C. m^{n}
D. n^{m}

Answer: D
(D) Watch Video Solution
20. The function $f: N \rightarrow N, N$ being the set of of natural numbers, defined by $f(x)=2 x+3$ is
A. surjective
B. injective but not surjective
C. injective
D. None of these

Answer: B
21. Let R be the real line. Consider the following subsets of the plane $R \times R$
$S=\{(x, y): y x+1$ and $0<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$. Which one of the following is true?
A. T is an equivalence relation on R but S is not
B. Neither S nor T is an equivalence relation on R
C. Both S and T are equivalence relations on R
D. S is an equivalence relation on R but T is not

Answer: A
22. A natural number a is said to be related to another natural number b , if $|a-b|<4$. The relation is
A. reflexive and symmetric
B. reflexive and transitive
C. symmetric and transitive
D. None of these

Answer: A

- View Text Solution

23. If $A=\{0,1,2,3,4,5\}$ and a relation R defined by (x) $\mathrm{R}(\mathrm{y})$, where $2 x+y=10$. Then R^{-1} is
A. $\{(3,4),(4,2),(5,0)\}$
B. $\{(4,3),(4,2),(5,0)\}$
C. $\{(4,3),(4,2),(5,0)\}$
D. $\{(4,3),(2,4),(0,5)\}$

Answer: D
24. Given the relation $R=\{(1,2)(2,3)\}$ on the set
$A=\{(1,2,3)\}$ the minimum number of ordered pairs which when added to R make it an equivalence relation is
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution
25. Let $A=\{1,2,3,4,5\}$ and R be a relation defined by $R=\{(x, y), x, y \in A, x+y=5\}$. Then R is
A. reflexive and symmetric but not transitive
B. an equivalence relation
C. symmetric but neither reflexive nor transitive
D. neither reflexive nor symmetric but transitive

Answer: C

D Watch Video Solution

26. Write the domain of the relation R defined on the
set Z of integers as follows:

$(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$

A. $\{3,4,5\}$
B. $\{0,3,4,5\}$
C. $\{0, \pm 3,4, \pm 5\}$
D. None of these

Answer: C

- Watch Video Solution

$$
\begin{aligned}
& \text { 27. The domain of the function } \\
& f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2} \text { is equal to }
\end{aligned}
$$

A. $[-3,-2.5) \cup(-2.5,2]$
B. $[-2,0) \cup(0,1]$
C. $[0,1]$
D. None of these

Answer: B

D Watch Video Solution

28. The range of the function $f(x)=\frac{x-2}{2-x}$ is
A. R
B. $R-\{1\}$
C. $\{-1\}$
D. $R-\{-1\}$

Answer: C

- Watch Video Solution

29. The function $f(x)=(\log) \frac{1+x}{1-x}$ satisfy the equation
A. $f\left(x_{1}\right) \cdot f(x)_{2}=f\left(x_{1}+x_{2}\right)$
B. $f(x+2)-2 f(x+1)+f(x)=0$
C. $f(x)+f(x+1)=f\left(x^{2}+x\right)$

$$
\text { D. } f\left(x_{1}\right)+f\left(x_{2}\right)=f \frac{x_{1}+x_{2}}{1+x_{1} x_{2}}
$$

Answer: D

D Watch Video Solution

30. Let $\mathrm{f}: \mathrm{R}-\{\mathrm{n}\} \rightarrow \mathrm{R}$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then,
A. f is one-one and onto
B. f is one-one and into
C. f is many-one and onto
D. f is many-one and into

Answer: B

- Watch Video Solution

31. If $f:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$ then $f^{-1}(x)$ equals:
A. $\frac{x+\sqrt{x^{2}-4}}{2}$
B. $\frac{x}{1+x^{2}}$
C. $\frac{x-\sqrt{x^{2}-4}}{2}$
D. $1+\sqrt{x^{2}-4}$

Answer: A
32. The mapping f : $N \rightarrow N$ given by
$f(n)=1+n^{2}, n \in N$, where N is the set of natural numbers, is
A. one-one and onto
B. onto but not one-one
C. one-one but not onto
D. Neither one-one nor onto

Answer: C

33. If $f: R \rightarrow R, f(x)=x^{2}$, then f is
A. injective but not surjective
B. surjective but not injective
C. bijective
D. None of the above

Answer: D

D Watch Video Solution
34. Let $g(x)=x^{2}-4 x-5$ then
A. g is one-one on R
B. g is one-one on $(-\infty, 2)$
C. g is not one-one on $(-\infty, 4)$

D. None of the above

Answer: B

D Watch Video Solution

35. The number of surjections from
$A=\{(1,2, \ldots \ldots, n\}, n \geq 2$ onto $B=\{a, b\}$ is
A. ${ }^{n} P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. None of these

Answer: B

D Watch Video Solution

36.

Given
$f(x)=\log _{10}\left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $\mathrm{fog}(\mathrm{x})$ equals
A. $-f(x)$
B. $3 f(x)$
C. $[f(x)]^{3}$

D. None of these

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 37. Let } f(x)=(x+1)^{2}-1,(x \geq-1) \text { then the set } \\
& \mathrm{S}=\left\{\mathrm{x}: \mathrm{f}(\mathrm{x})=f^{-1}(\mathrm{x})\right\} \text { is }
\end{aligned}
$$

A. $0,-1, \frac{-3+i \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}$
B. $\{0,1,-1\}$
C. $\{0,-1\}$
D. empty

Answer: C

D Watch Video Solution

38. A ral valued functin $f(x)$ satisfies the functional equation $f(x-y)=f(x) f(y)-f(a-x) f(x+y)$
where 'a' is a given constant and $f(0)=1, f(2 a-x)$ is equal to :
A. $f(-x)$
B. $f(a)+f(a-x)$
C. $f(x)$
D. $-f(x)$

- Watch Video Solution

39. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by
$f(x)=2^{x(x-1)}$ then f^{-1} is
A. $\left(\frac{1}{2}\right)^{x(x-1)}$
B. $\frac{1}{2}\left(1+\sqrt{1+4 \log _{2} x}\right)$
C. $\frac{1}{2}\left(1-\sqrt{1-4 \log _{2} x}\right)$
D. Not defined

Answer: B
40. If $f: R \rightarrow(-\infty, 1)$ such that $f(x)=1-2^{-x}$ then $f^{-1}(x)$ is
A. $1+\log _{2}(-x)$
B. $1-\log _{2}(x)$
C. $\log _{2}(1-x)$
D. $-\log _{2}(1-x)$

Answer: D
41. Let a binary operation * on Q (set of all rational numbers) be defined by a $* \mathrm{~b}=\mathrm{a}+2 \mathrm{~b}$ for all $\mathrm{a}, \mathrm{b} \in Q$. Then,
A. Q is closed under the given operation
B. the given operation is commutative
C. the given operation is associative
D. Q is not closed under the given operation

Answer: A

- View Text Solution

42. Let Z be the set of integers and * be a binary operation of Z defined as $a * b=a+b-a b$ for all a, $\mathrm{b} \in Z$. The inverse of an element $a(\neq 1) \in Z$ is
A. $\frac{a}{a-1}$
B. $\frac{a}{1-a}$
C. $\frac{a-1}{a}$
D. None of the above

Answer: A

- View Text Solution

1. If $f(x)$ is an odd periodic function with period 2 , then $f(4)$ equals
A. -4
B. 4
C. 2
D. 0

Answer: D
2. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3$,
$6)\}$ be a relation on the set $A=\{3,6,9,12\}$. The relation is:
A. an equivalence relation
B. reflexive and symmetric
C. reflexive and transitive
D. only reflexive

Answer: C

D Watch Video Solution
3. The total number of subsets of a finite set A has 56 more elements than the total number of subsets of another finite set B. What is the number of elements in the set A ?
A. 5
B. 6
C. 7
D. 8

Answer: B

- Watch Video Solution

4. Let R be the relation on the set R of all real numbers defined by a $R b$ Iff $|a-b| \leq 1$. Then R is
A. reflexive and symmetric only
B. reflexive and transitive only
C. equivalence
D. None of the above

Answer: A

D Watch Video Solution

$$
\text { 5. } A=\left\{x \in C: x^{4}-1=0\right\}
$$

$B=\left\{x \in C: x^{2}-1=0\right\}$

$$
C=\left\{x \in C: x^{2}+1=0\right\}
$$

where, C is complex plane. Then,
A. $A=B \cup C$
B. $C=A \cap B$
C. $B=A \cap C$
D. $A=B \cap C$

Answer: A

- View Text Solution

6. The function $f:(-\infty,-1) 0, e^{5}$ defined by $f(x)=e^{x \wedge}(3-3 x+2)$ is many one and onto
many one and into one-one and onto one-one and into
A. many-one and onto
B. many-one and into
C. one-one and onto
D. one-one and into

Answer: D

D Watch Video Solution

7. If the domain of the function $f(x)=x^{2}-6 x+7$ is $(-\infty, \infty)$, then the range of the function is
A. $(-\infty, \infty)$
B. $[-2, \infty)$
C. $(-2,3)$
D. $(-\infty,-2)$

Answer: B

D Watch Video Solution

8. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions given
by $f(x)=2 x-3, g(x)=x^{3}+5$. Then $(f o g)^{-1}$ is
equal to
A. $\frac{x+7^{1 / 3}}{2}$
В. $x-\frac{7^{1 / 2}}{2}$
C. $\frac{x-2^{1 / 3}}{7}$
D. $\frac{x-7^{1 / 3}}{2}$

Answer: D

D Watch Video Solution

9. The inverse of the function $\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is
A. $\log _{10}(2-x)$
B. $\frac{1}{2} \log _{10} \frac{1+x}{1-x}$
C. $\frac{1}{2} \log _{10}(2 x-1)$

$$
\text { D. } \frac{1}{4} \log _{10} \frac{2 x}{2-x}
$$

Answer: B

- Watch Video Solution

10.

$$
n(U)=700, n(A)=200, n(B)=300, n(A \cap B)=100
$$

, then $n\left(A^{\prime} \cap B^{\prime}\right)$ is equal to
A. 300
B. 350
C. 400
D. 500

Answer: A

- Watch Video Solution

11. Let f be a function with domain $[-3,5]$ and let $g(x)=$ $|3 x+4|$, Then the domain of $(f \circ g)(\mathrm{x})$ is

$$
\begin{aligned}
& \text { A. } 3,-\frac{1}{3} \\
& \text { B. } 3, \frac{1}{3} \\
& \text { C. }-3, \frac{1}{3} \\
& \text { D. }-3,-\frac{1}{3}
\end{aligned}
$$

Answer: C
12. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are difined by
$f(x)=|x|$ and $g(x)=[x-3]$ for $x \in R$, then $g(f(x)):-\frac{8}{5}<x<\frac{8}{5}$ is equal to
A. $\{0,1\}$
B. $\{1,2\}$
C. $\{-3,-2\}$
D. $\{2,3\}$

Answer: C

13. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. Then relation R is
A. a function
B. transitive
C. not symmetric
D. reflexive

Answer: C

14. Let $A=[-1,1]$ and $f: A \rightarrow A$ be defined as $f(x)=x|x|$ for all $x \in A$, then $\mathrm{f}(\mathrm{x})$ is
A. many-one and into function
B. one-one and into function
C. many-one and into function
D. one-one and onto function

Answer: D

D Watch Video Solution
15.
$U=\left\{x \mid x^{5}-6 x^{4}+11 x^{3}-6 x^{2}=0\right\}$
$A=\left\{x \mid x^{2}-5 x+6=0\right\}$
$B=\left\{x \mid x^{2}-3 x+2=0\right\}$ Then, $(A \cap B)$ is equal to
A. $\{1,3\}$
B. $\{1,2,3\}$
C. $\{0,1,3\}$
D. $\{0,1,2,3\}$

Answer: C

16. Which of the following statements is not correct for the relation R defined by $a R b$ if and only if b lives within one kilometre from a?
A. R is reflexive
B. R is symmetric
C. R is not anti-symmetric
D. None of these

Answer: C

- View Text Solution

17. Range of the function $f(x)=\frac{x^{2}}{x^{2}+1}$ is
A. $(-1,0)$
B. $(-1,1)$
C. $[0,1)$
D. $(1,1)$

Answer: C

D Watch Video Solution
18. $x^{2}=x y$ is a relation which is
A. symmetric
B. reflexive and transitive
C. transitive
D. None of these

Answer: C

D Watch Video Solution

19. If $f(x)=a x^{2}+b x+c$ and $g(x)+p x^{2}+q x$ with
$g(1)=f(1) g(2)-f(2)=1 g(3)-f(3)=4$ then $g(4)-f(4)$ is
A. 0
B. 5
C. 6
D. None of these

Answer:

D Watch Video Solution

