

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2017

Part Iv Mathematics

1. Find the coefficient of x^5 in the expansion of $(1+x)^{21}+(1+x)^{22}++(1+x)^{30}.$

A. $^{35}C_5$

B. 9C_5

C. $^{31}C_6-^{21}C_6$

D. $^{30}C_5 + ^{20}C_5$

Answer: c

2. If z =a + ib satisfies arg (z-1) =arg (z+3i) , then
$$(a-1)$$
: b =

- A. 2:1
- B.1:3
- C. -1:3
- D. None of these

Answer: b

Watch Video Solution

3. If P and P denote the length of the perpendicular from a focus and the centre of an ellipse with semi - major axis of length a, respectively , on a tangent to the ellipse and r denotes the focal distance of the point , then

Answer: a

Watch Video Solution

4. The value of $\sum_{r=1}^{10} r. \, rac{^n C_r}{^n C_{r-1}}$ is equal to

D. None of these

Answer: a

5. The numbers $3^{2\sin 2\alpha - 1}$, 14 and $3^{4 - 2\sin 2\alpha}$ form first three terms of A.P., its fifth term is

A.
$$-25$$

$$B. - 12$$

Answer: d

- **6.** For the equation $3x^2+px+3=0, p>0,\,$ if one of the root is square of the other, then p is equal to 1/3 b. 1 c. 3 d. 2/3
 - A. $\frac{1}{2}$
 - B. 1
 - C. 3

D.
$$\frac{2}{3}$$

Answer: c

Watch Video Solution

7. If $a=\log_2 3,\, b=\log_2 5$ and $c=\log_7 2$, then $\log_{140} 63$ in terms of a, b, c

is

- A. $\dfrac{2ac+1}{2c+abc+1}$
- $\mathsf{B.}\; \frac{2ac+1}{2a+c+a}$
- C. $\dfrac{2ac+1}{2c+ab+a}$
- D. None of these

Answer: d

8. If
$$\cos(x-y), \cos x$$
 and $\cos(x+y)$ are in H.P., then $\left|\cos x \frac{\sec(y)}{2}\right|$ equals

defined

by

A.
$$\pm\sqrt{2}$$

B.
$$\pm 1/\sqrt{2}$$

$$\mathsf{C}.\pm 2$$

D. None of these

Answer: a

Watch Video Solution

Let $A = \{1, 2, 3, 4, 5\}$ and R be a relation $R = \{(x,y) : x,y \in A, x+y=5\}$. The ,R is

A. reflexive and symmetric but not transitive

B. an equivalence relation

C. symmetric but neither reflexive nor transitive

D. neither reflexive nor symmetric but transitive

Answer: c

Watch Video Solution

- 10. The number of times the digit 5 will be written when listing the integers from 1 to 100, is
 - A. 271
 - B. 272
 - C. 300
 - D. None of these

Answer: c

11. Let A and B be two sets
$$A\cap X=B\cap X=\phi ext{ and } A\cup X=B\cup X ext{ for some set X. then}$$

12. Let A=[-1,1] and $f\!:\!A o A$ be defined as f(x)=x|x| for all

be

two

that

sets

and

Let

Α

11.

$$\operatorname{D.} A \cup B = X$$

Answer: a

 $x \in A, thenf(x)$

- A. many-one and into function
- B. one-one and into function
- C. one-one and into function

D. one-one and into function

Answer: d

Watch Video Solution

13. The general solution $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$ is.

of

A.
$$n\pi+rac{\pi}{8}$$

B.
$$\frac{n\pi}{2} + \frac{\pi}{8}$$

$$\mathsf{C.}\,(\,-1)^n\frac{n\pi}{2}+\frac{\pi}{8}$$

D.
$$2n\pi+\cos^{-1}rac{3}{2}$$

Answer: b

14. The equation of two equal sides of an isosceles triangle are 7x - y + 3 =

0 and x + y - 3 = 0 and its third side is passes through the point (1, -10).

The equation of the third side is

A.
$$x - 3y = -31$$

B.
$$x - 3y = 31$$

$$\mathsf{C.}\,x+3y=31$$

D.
$$x + 3y = -31$$

Answer: b

Watch Video Solution

15. If two distinct chords, drawn from the point (p, q) on the circle

$$x^2+y^2=px+qy$$
 (where pq $\,
eq \, \sim$ 0) are bisected by the x-axis, then

A.
$$p^2=q^2$$

B.
$$p^2=8q^2$$

C.
$$p^2 < 8q^2$$

D.
$$p^2 > 8q^2$$

Answer: d

Watch Video Solution

16. Find the length of the perpendicular drawn from point (2,3,4) to line

$$\frac{4-x}{2} = \frac{y}{6} = \frac{1-z}{3}.$$

A.
$$\frac{3}{7}\sqrt{101}$$

B.
$$\frac{2}{7}\sqrt{101}$$

C.
$$\frac{2}{7}\sqrt{103}$$

D.
$$\frac{3}{7}\sqrt{103}$$

Answer: a

17. The image of the point (1,6,3) in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is (a,b,c) then a+b+c=

A.
$$(-1, 0, 7)$$

B.
$$(-1,0,-7)$$

D.
$$(2, 0, 7)$$

Answer: c

- **18.** The distances of the point (1,-5,9) from the plane x-y+z=5 measured along a straight line x=y=z is $2\sqrt{3}$ k , then the value of k is
 - A. 5
 - B. 6
 - C. $\sqrt{3}$

Answer: a

Watch Video Solution

- **19.** $\lim_{n o \infty} \, \sin\!\left[\pi \sqrt{n^2 + 1}\right]$ is equal to
 - **A.** ∞
 - В. О
 - C. does not exist
 - D. None of these

Answer: b

Watch Video Solution

20. A function is defined as $f(x)=\left\{egin{aligned} e^x,&x\leq0\\ |x-1|,&x>0 \end{aligned}
ight.$ then f(x) is

A. f(x) is differentiable at x=0

B. f(x) is continuous at x = 0,1

C. f(x) is differentiable at x=1

D. None of the above

Answer: b

Watch Video Solution

21. If a function $f\!:\!R\to R$ satisfy the equation $f(x+y)=f(x)+f(y),\ \forall x,y$ and the function f(x) is continuous at x=0 , then

A. f(x) is continuous for all positive real values of x

B. f(x) is continuous for all x

C. f(x) = 0 for all x

D. None of the above

Answer: b

Watch Video Solution

22. The value of f(0) so that the function $f(x)=\frac{2x-\sin^{-1}x}{2x+\tan^{-1}x}$ is continuous at each point on its domain is:

- A. $\frac{1}{3}$
- $\mathsf{B.}-\frac{1}{3}$
- $\mathsf{C.}\,\frac{2}{3}$
- $\mathsf{D.}-\frac{2}{3}$

Answer: a

Watch Video Solution

23. Consider the greatest integer function, defined by $f(x) = [x], \, 0 \leq x < 2$. Then,

A. f is derivable at x=1

B. f is not derivable at x=1

C. f is derivable at x = 2

D. None of these

Answer: b

Watch Video Solution

24. The function $f(x) = -2x^3 + 21x^2 - 60x + 41$,in the interval $(-\infty,1)$,

A. f(x) is decreasing in $(-\infty, 1)$

B. f(x) is decreasing in $(-\infty,2)$

C. f(x) is increasing in $(-\infty,1)$

D. f(x) is increasing in $(-\infty,2)$

Answer: b

25. Rolle's theorem is not applicable to the function f(x) = |x| defined on [-1,1] because

- A. f'(1) does not exist
- B. f'(-1) does not exist
- C. f(x) is discontinuous at x=0
- D. f' (0) does not exist

Answer: d

Watch Video Solution

26. If the two curves $y=a^x$ and $y=b^x$ intersect at an angle α , then tan α equals

A.
$$\frac{a-b}{1+ab}$$

B. $\frac{1}{n}$

C. n

Answer: d

27. Evaluate $\frac{\int_0^n [x]dx}{\int_0^n \{x\}dx}$ (where [x] and $\{x\}$ are integral and fractional

Watch Video Solution

B. $\frac{\log a - \log b}{1 + \log a \log b}$

D. $\frac{\log a + \log b}{1 - \log a \log b}$

C. $\frac{a+b}{1-ab}$

Answer: b

parts of x respectively and $n \in N$).

A.
$$\frac{1}{n-1}$$

D.
$$n-1$$

28. The maximum value of
$$f(x) = x + \sin 2x, x \in [0, 2\pi]$$
 is

A.
$$\frac{\pi}{2}$$

B.
$$2\pi$$

$$\operatorname{C.}\frac{3\pi}{4}$$

D.
$$\frac{3\pi}{2}$$

Answer: b

Watch Video Solution

29. The area bounded by the curve $y=|\cos x-\sin x|,\, 0\leq x\leq \frac{\pi}{2}$ and above x-axis is

A.
$$2\sqrt{2}$$

B.
$$2\sqrt{2}-2$$

$$\mathrm{C.}\,2\sqrt{2}+2$$

Answer: b

Watch Video Solution

30. The solution of dy//dx=cos(x+y)+sin(x+y), is given by

A.
$$\log \left[1+ an\!\left(rac{a+y}{2}
ight)
ight]+C=0$$

$$\mathsf{B.}\log\Bigl[1+ an\Bigl(rac{x+y}{2}\Bigr)\Bigr]=x+C$$

$$\mathsf{C.}\log\Bigl[1- an\Bigl(rac{x+y}{2}\Bigr)\Bigr]=x+C$$

D. None of above

Answer: b

Watch Video Solution

31. The area enclosed between the curves $y=x^3$ and $y=\sqrt{x}$ is

A.
$$\frac{5}{3}$$
 sq units

- B. $\frac{5}{4}$ sq units
- C. $\frac{5}{12}$ sq units
- D. $\frac{12}{5}$ sq units

Answer: c

Watch Video Solution

32.
$$(\lim)_{x \overrightarrow{\infty}} \left(an - \frac{1+n^2}{1+n}\right) = b$$
, where a is a finite number, then $a=1$ (b) $a=0$ (c) $b=1$ (d) $b=-1$

- A. a=2
- B. a=0

C. b=1

D. b=-1

Answer: c

33. If the papers of 4 students can be checked by any one of the 7 teachers, then the probability that all the 4 papers are checked by exactly 2 teachers is 2/7 b. 12/49 c. 32/343 d. none of these

 $(10x-5)^2+(10y-4)^2=\lambda^2(3x+4y-1)^2$

A.
$$\frac{12}{49}$$

$$\mathsf{B.}\;\frac{6}{49}$$

c.
$$\frac{9}{49}$$

D.
$$\frac{15}{49}$$

Answer: b

34.

Watch Video Solution

equation

represents a hyperbola then

A.
$$-2 < \lambda < 2$$

B. $\lambda > 2$

C. $\lambda < -2 \,\, {
m or} \,\, \lambda > 2$

 $D.0 < \lambda < 2$

Answer: c

Watch Video Solution

35. Let
$$\widehat{a}$$
 and \widehat{b} be two non -collinear unit vectors .If $u=\widehat{a}-\left(\widehat{a}\cdot\widehat{b}\right)\widehat{b}$ and $v=\widehat{a}\times\widehat{b}$, then $|v|$ is equal to

A. |u|

B. $|u| + |v. \widehat{a}|$

 $\mathsf{C}.\,2|v|$

D. $|v|+u.\left(\widehat{a}+\widehat{b}
ight)$

Answer: a

36. If the variance of the observations x_1,x_2,\ldots,x_n is σ^2 , then the variance of $\alpha x_1,\alpha x_2,\ldots,\alpha x_n, \alpha \neq 0$ is

A.
$$\sigma^2$$

B.
$$\alpha \sigma^2$$

$$C \alpha^2 \sigma^2$$

D.
$$\frac{\sigma^2}{\alpha^2}$$

Answer: c

Watch Video Solution

37. Coefficients of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25, respectively. Difference of their standard deviations is

- B. 1
- C. 1.3
- D. 2.5

Answer: a

Watch Video Solution

 $2x + 3y \le 18, 2x + y \le 10, x \ge 0, y \ge 0$ is

38. The maximum vlaue of Z=9x+13y subject to constraints

- A. 130
 - B. 81
 - C. 79
 - D. 99

Answer: c

39. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is

A.
$$\frac{1}{4}$$

B.
$$\frac{5}{8}$$

C.
$$\frac{1}{2}$$
D. $\frac{1}{6}$

Answer: c

40.

Watch Video Solution

$$\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=rac{3\pi}{2} \ ext{ and } \ f(1)=2. \ f(p+q)=f(p). \ f(q) \ orall_1$$
 then $x^{f(1)}+y^{f(2)}+z^{f(3)}-rac{x+y+z}{x^{f(1)}+y^{f(2)}+z^{f(3)}}$ is equal to

If

- A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: c

Watch Video Solution

- - A. e
 - B. 2e
 - C. 3e
 - D. None of these

Answer: c

42. If z_1, z_2 and z_3 represent the vertices of an equilateral triangle such

that
$$|z_1|=|z_2|=|z_3|$$
, then

A.
$$z_1 + z_2 = z_3$$

B.
$$z_1 + z_2 + z_3 = 0$$

$$\mathsf{C.}\,z_1z_2=\frac{1}{z_3}$$

D.
$$z_1 - z_2 = z_3 - z_2$$

Answer: b

Watch Video Solution

43. If
$$\int rac{\left(\sqrt{x}^5
ight)dx}{\left(\sqrt{x}
ight)^7+x^6}=\lambda\log\Bigl(rac{x^a}{x^a+1}\Bigr)+C$$
 then $a+\lambda$ equal to

A. 2

Answer: b

Watch Video Solution

44. Line joining the points (0,3) and (5,-2) is a tangent to the curve

$$y=rac{ax}{1+x}$$
 , then

A.
$$a = 1 + \sqrt{3}$$

B.
$$a\in\phi$$

$$\mathsf{C.}\,a=\ -1\pm\sqrt{3}$$

D.
$$a=~-2\pm2\sqrt{3}$$

Answer: b

45. The shortest distance between the parabolas

 $y^2 = 4x \text{ and } y^2 = 2x - 6 \text{ is}$

- A. 2
- B. $\sqrt{5}$
- C. 3
- D. None of these

Answer: b

