©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2017

Part Iv Mathematics

1. Find the coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}++(1+x)^{30}$.
A. ${ }^{35} C_{5}$
B. ${ }^{9} C_{5}$
C. ${ }^{31} C_{6}-{ }^{21} C_{6}$
D. ${ }^{30} C_{5}+{ }^{20} C_{5}$
2. If $z=a+i b$ satisfies $\arg (z-1)=\arg (z+3 i)$, then $(a-1): b=$
A. 2:1
B. 1: 3
C. $-1: 3$
D. None of these

Answer: b

- Watch Video Solution

3. If P and P denote the length of the perpendicular from a focus and the centre of an ellipse with semi - major axis of length a, respectively, on a tangent to the ellipse and r denotes the focal distance of the point , then
A. ap = rp'
B. rp =ap'
C. $a p=r p^{\prime}+1$
D. $a p^{\prime}+r p=1$

Answer: a

D Watch Video Solution

4. The value of $\sum_{r=1}^{10} r \cdot \frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}$ is equal to
A. $5(2 n-9)$
B. 10 n
C. 9 ($n-4$)
D. None of these

Answer: a

5. The numbers $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ form first three terms of A.P., its fifth term is
A. -25
B. -12
C. 40
D. 53

Answer: d

- Watch Video Solution

6. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the root is square of the other, then p is equal to $1 / 3$ b. 1 c. 3 d. $2 / 3$
A. $\frac{1}{2}$
B. 1
C. 3
D. $\frac{2}{3}$

Answer: c

- Watch Video Solution

7. If $a=\log _{2} 3, b=\log _{2} 5$ and $c=\log _{7} 2$, then $\log _{140} 63$ in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
A. $\frac{2 a c+1}{2 c+a b c+1}$
B. $\frac{2 a c+1}{2 a+c+a}$
C. $\frac{2 a c+1}{2 c+a b+a}$
D. None of these

Answer: d

8. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in H.P., then $\left|\cos x \frac{\sec (y)}{2}\right|$ equals
A. $\pm \sqrt{2}$
B. $\pm 1 / \sqrt{2}$
C. ± 2
D. None of these

Answer: a

- Watch Video Solution

9. Let $A=\{1,2,3,4,5\}$ and R be a relation defined by $R=\{(x, y): x, y \in A, x+y=5\}$. The, R is
A. reflexive and symmetric but not transitive
B. an equivalence relation
C. symmetric but neither reflexive nor transitive
D. neither reflexive nor symmetric but transitive

Answer: c

- Watch Video Solution

10. The number of times the digit 5 will be written when listing the integers from 1 to 100, is
A. 271
B. 272
C. 300
D. None of these

Answer: c
$A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set X . then
A. $A=B$
B. $A=X$
C. B=X
D. $A \cup B=X$

Answer: a

- Watch Video Solution

12. Let $A=[-1,1]$ and $f: A \rightarrow A$ be defined as $f(x)=x|x|$ for all $x \in A, \operatorname{thenf}(x)$
A. many-one and into function
B. one-one and into function
C. one-one and into function
D. one-one and into function

Answer: d

(Watch Video Solution

> 13. The general $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is.
A. $n \pi+\frac{\pi}{8}$
B. $\frac{n \pi}{2}+\frac{\pi}{8}$
C. $(-1)^{n} \frac{n \pi}{2}+\frac{\pi}{8}$
D. $2 n \pi+\cos ^{-1} \frac{3}{2}$

Answer: b

- Watch Video Solution

14. The equation of two equal sides of an isosceles triangle are $7 x-y+3=$ 0 and $x+y-3=0$ and its third side is passes through the point (1, -10). The equation of the third side is
A. $x-3 y=-31$
B. $x-3 y=31$
C. $x+3 y=31$
D. $x+3 y=-31$

Answer: b

- Watch Video Solution

15. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y$ (where $\mathrm{pq} \neq \sim 0$) are bisected by the x -axis, then
A. $p^{2}=q^{2}$
B. $p^{2}=8 q^{2}$
C. $p^{2}<8 q^{2}$
D. $p^{2}>8 q^{2}$

Answer: d

- Watch Video Solution

16. Find the length of the perpendicular drawn from point $(2,3,4)$ to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.
A. $\frac{3}{7} \sqrt{101}$
B. $\frac{2}{7} \sqrt{101}$
C. $\frac{2}{7} \sqrt{103}$
D. $\frac{3}{7} \sqrt{103}$

Answer: a

17. The image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is (a, b, c) then $a+b+c=$
A. $(-1,0,7)$
B. $(-1,0,-7)$
C. $(1,0,7)$
D. $(2,0,7)$

Answer: c

- Watch Video Solution

18. The distances of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along a straight line $x=y=z$ is $2 \sqrt{3} k$, then the value of k is
A. 5
B. 6
C. $\sqrt{3}$
D. 4

Answer: a

- Watch Video Solution

19. $\lim _{n \rightarrow \infty} \sin \left[\pi \sqrt{n^{2}+1}\right]$ is equal to
A. ∞
B. 0
C. does not exist
D. None of these

Answer: b

- Watch Video Solution

20. A function is defined as $f(x)=\left\{\begin{array}{ll}e^{x}, & x \leq 0 \\ |x-1|, & x>0\end{array}\right.$, then $\mathrm{f}(\mathrm{x})$ is
A. $f(x)$ is differentiable at $x=0$
B. $f(x)$ is continuous at $\mathrm{x}=0,1$
C. $f(x)$ is differentiable at $x=1$
D. None of the above

Answer: b

- Watch Video Solution

21. If a function $f: R \rightarrow R$ satisfy the equation $f(x+y)=f(x)+f(y), \forall x, y$ and the function $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$, then
A. $f(x)$ is continuous for all positive real values of x
B. $f(x)$ is continuous for all x
C. $f(x)=0$ for all x
D. None of the above

- Watch Video Solution

22. The value of $f(0)$ so that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point on its domain is:
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. $\frac{2}{3}$
D. $-\frac{2}{3}$

Answer: a

D Watch Video Solution

23. Consider the greatest integer function, defined by $f(x)=[x], 0 \leq x<2$. Then,
A. f is derivable at $x=1$
B. f is not derivable at $x=1$
C. f is derivable at $x=2$
D. None of these

Answer: b

D Watch Video Solution

24. The function $f(x)=-2 x^{3}+21 x^{2}-60 x+41$, in the interval $(-\infty, 1)$,
A. $f(x)$ is decreasing in $(-\infty, 1)$
B. $f(x)$ is decreasing in $(-\infty, 2)$
C. $f(x)$ is increasing in $(-\infty, 1)$
D. $f(x)$ is increasing in $(-\infty, 2)$
25. Rolle's theorem is not applicable to the function $f(x)=|x|$ defined on $[-1,1]$ because
A. $f^{\prime}(1)$ does not exist
B. $f^{\prime}(-1)$ does not exist
C. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
D. $\mathrm{f}^{\prime}(0)$ does not exist

Answer: d

- Watch Video Solution

26. If the two curves $y=a^{x}$ and $y=b^{x}$ intersect at an angle α, then tan α equals
A. $\frac{a-b}{1+a b}$
B. $\frac{\log a-\log b}{1+\log a \log b}$
C. $\frac{a+b}{1-a b}$
D. $\frac{\log a+\log b}{1-\log a \log b}$

Answer: b

- Watch Video Solution

27. Evaluate $\frac{\int_{0}^{n}[x] d x}{\int_{0}^{n}\{x\} d x}$ (where $[x]$ and $\{x\}$ are integral and fractional parts of x respectively and $n \varepsilon N$).
A. $\frac{1}{n-1}$
B. $\frac{1}{n}$
C. n
D. $n-1$

Answer: d

28. The maximum value of $f(x)=x+\sin 2 x, x \in[0,2 \pi]$ is
A. $\frac{\pi}{2}$
B. 2π
C. $\frac{3 \pi}{4}$
D. $\frac{3 \pi}{2}$

Answer: b

- Watch Video Solution

29. The area bounded by the curve $y=|\cos x-\sin x|, 0 \leq x \leq \frac{\pi}{2}$ and above x -axis is
A. $2 \sqrt{2}$
B. $2 \sqrt{2}-2$
C. $2 \sqrt{2}+2$
D. 0

Answer: b

- Watch Video Solution

30. The solution of $d y / / d x=\cos (x+y)+\sin (x+y)$, is given by
A. $\log \left[1+\tan \left(\frac{a+y}{2}\right)\right]+C=0$
B. $\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+C$
C. $\log \left[1-\tan \left(\frac{x+y}{2}\right)\right]=x+C$
D. None of above

Answer: b

- Watch Video Solution

31. The area enclosed between the curves $y=x^{3}$ and $y=\sqrt{x}$ is
A. $\frac{5}{3}$ sq units
B. $\frac{5}{4}$ sq units
C. $\frac{5}{12}$ sq units
D. $\frac{12}{5}$ sq units

Answer: c

- Watch Video Solution

32. $(\lim)_{x \rightarrow}\left(a n-\frac{1+n^{2}}{1+n}\right)=b$, where a is a finite number, then $a=1$ (b) $a=0$ (c) $b=1$ (d) $b=-1$
A. $a=2$
B. $a=0$
C. $b=1$
D. $b=-1$

Watch Video Solution

33. If the papers of 4 students can be checked by any one of the 7 teachers, then the probability that all the 4 papers are checked by exactly 2 teachers is $2 / 7 \mathrm{~b} .12 / 49 \mathrm{c} .32 / 343 \mathrm{~d}$. none of these
A. $\frac{12}{49}$
B. $\frac{6}{49}$
C. $\frac{9}{49}$
D. $\frac{15}{49}$

Answer: b

- Watch Video Solution

34. if the equation $(10 x-5)^{2}+(10 y-4)^{2}=\lambda^{2}(3 x+4 y-1)^{2}$
represents a hyperbola then
A. $-2<\lambda<2$
B. $\lambda>2$
C. $\lambda<-2$ or $\lambda>2$
D. $0<\lambda<2$

Answer: c

- Watch Video Solution

35. Let \hat{a} and \hat{b} be two non -collinear unit vectors .If $u=\widehat{a}-(\widehat{a} \cdot \hat{b}) \hat{b}$ and $v=\widehat{a} \times \hat{b}$, then $|v|$ is equal to
A. $|u|$
B. $|u|+|v . \widehat{a}|$
C. $2|v|$
D. $|v|+u .(\widehat{a}+\hat{b})$
36. If the variance of the observations $x_{1}, x_{2}, \ldots \ldots, x_{n}$ is σ^{2}, then the variance of $\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}, \alpha \neq 0$ is
A. σ^{2}
B. $\alpha \sigma^{2}$
C. $\alpha^{2} \sigma^{2}$
D. $\frac{\sigma^{2}}{\alpha^{2}}$

Answer: c

- Watch Video Solution

37. Coefficients of variation of two distributions are 50 and 60 , and their arithmetic means are 30 and 25 , respectively. Difference of their standard deviations is
A. 0
B. 1
C. 1.3
D. 2.5

Answer: a

- Watch Video Solution

38. The maximum vlaue of $Z=9 x+13 y$ subject to constraints
$2 x+3 y \leq 18,2 x+y \leq 10, x \geq 0, y \geq 0$ is
A. 130
B. 81
C. 79
D. 99
39. A coin is tossed 7 times.Each time a man calls head.The probability that he wins the toss on more occasions is
A. $\frac{1}{4}$
B. $\frac{5}{8}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Answer: c

- Watch Video Solution

40.

$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$ and $f(1)=2 . f(p+q)=f(p) . f(q) \forall_{1}$
then $x^{f(1)}+y^{f(2)}+z^{f(3)}-\frac{x+y+z}{x^{f(1)}+y^{f(2)}+z^{f(3)}}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: c

D Watch Video Solution

41. The value of $\frac{2}{1!}+\frac{2+4}{2!}+\frac{2+4+6}{3!}+\ldots$ is
A.e
B. $2 e$
C. 3 e
D. None of these

Answer: c

42. If z_{1}, z_{2} and z_{3} represent the vertices of an equilateral triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, then
A. $z_{1}+z_{2}=z_{3}$
B. $z_{1}+z_{2}+z_{3}=0$
C. $z_{1} z_{2}=\frac{1}{z_{3}}$
D. $z_{1}-z_{2}=z_{3}-z_{2}$

Answer: b

- Watch Video Solution

43. If $\int \frac{\left(\sqrt{x}^{5}\right) d x}{(\sqrt{x})^{7}+x^{6}}=\lambda \log \left(\frac{x^{a}}{x^{a}+1}\right)+C$ then $a+\lambda$ equal to
A. 2
B. >2
C. <2
D. >3

Answer: b

- Watch Video Solution

44. Line joining the points $(0,3)$ and $(5,-2)$ is a tangent to the curve $y=\frac{a x}{1+x}$, then
A. $a=1+\sqrt{3}$
B. $a \in \phi$
C. $a=-1 \pm \sqrt{3}$
D. $a=-2 \pm 2 \sqrt{3}$
45. The shortest distance between the parabolas
$y^{2}=4 x$ and $y^{2}=2 x-6$ is
A. 2
B. $\sqrt{5}$
C. 3
D. None of these

Answer: b

