

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2019 BITSAT

Part Iv Mathematics

1. If the length of the major axis of the ellipse $\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) = 1$ is three times the length of minor axis, its

accentricity is

A.
$$\frac{1}{3}$$

B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{\frac{2}{3}}$

D.
$$\frac{2\sqrt{2}}{3}$$

Answer: D

Watch Video Solution

2. The value of
$$\sum_{m=1}^{n} \tan^{-1} \left(\frac{2m}{m^4 + m^2 + 2} \right)$$
 is :
A. $\tan^{-1} \left(\frac{n^2 + n}{n^2 + n + 2} \right)$
B. $\tan^{-1} \left(\frac{n^2 - n}{n^2 - n + 2} \right)$
C. $\tan^{-1} \left(\frac{n^2 + n + 2}{n^2 + n} \right)$

D. none of these

Answer: A

3. Let
$$ig(2x^2+3x+4ig)^{10}=\sum_{r=0}^{20}a_rx^r$$
 then the value of $rac{a_8}{a_{12}}$ is

B. 4

C. 8

D. 16

Answer: B

4. Let ABC be an acute-angled triangle and let D be the midpoint

of BC. If AB = AD, then tan(B)/tan(C) equals

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

C. 2

D. 3

Answer: D

Watch Video Solution

5. Suppose the limit L =
$$\lim_{n\to\infty} \sqrt{n} \int_0^1 \frac{1}{(1+x^2)^n} dx$$
 exists and is larger than $\frac{1}{2}$ then

A.
$$rac{1}{2} < L < 2$$

 $\mathsf{B.}\, 2 < L < 3$

$$\mathsf{C.}\,3 < L < 4$$

 $\mathrm{D.}\,L\geq4$

Answer: A

6. In the real number system the equation

$$\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}$$
=1 has

A. No solution

B. Exactly two distinct solution

C. Exactly four distinct solution

D. Infinitely many solution

Answer: D

7. If system of equation ax + y + z = a, x + by + z = b and x + y + cz = b

c is inconsistent, then which of the following is correct?

A. abc - a - b - c + 2 = 0B. abc - a - b - c + 3 = 0, a = 1C. abc - a - b - c + 3 = 0D. $abc - a - b - c + 2 = 0, a \neq 1, b \neq 1, c \neq 1$

Answer: D

Watch Video Solution

8. A die is thrown 7 times. What is the chance that an odd number

turns up (i) exactly 4 times (ii) at least 4 times

A.
$$\frac{1}{2}$$

B. $\frac{31}{64}$
C. $\frac{51}{128}$
D. $\frac{35}{128}$

Answer: A

9. The equation of plane containing line x - y = 1, z = 1 and parallel

to
$$rac{x}{2}-rac{z}{3}=1,y=3$$
is

B. 3x - 3y - 2z = 1

D. 3x + 3y + 2z = -1

Answer: B

View Text Solution

10. If
$$(1+x+x^2)^{20} = \sum_{r=0}^{40} a_r . x^r$$
 then $\sum_{r=0}^{39} (-1)^r . A_r . A_{r+1}$

equal to

A. 79

B. 2^{39} . $^{78}C_{39}$

C. 3^{39} . $^{78}C_{39}$

D. 0

Answer: D

11. The value of
$$\lim_{x o rac{3\pi}{4}} rac{4 \sin^2 x \cos x - \cos x + \sin x}{\sin x + \cos x}$$
 is equal to

 $\mathsf{A.}-1$

B. 0

C. 1

D. none of these

Answer: A

Watch Video Solution

12. If a, b, c are non-coplaner vectors such that $b \times c = a, c \times a = b, a \times b = c$, then which of the following is not TRUE?

A. |a|-|b|=0

B. |a| =|b| =|c| =2

C. [a b c] =1

D. |a||b||c|=1

Answer: B

D. 6

Answer: A

Watch Video Solution

14. The angle between the lines whose direction cosines satisfy π

the equations
$$l+m+n=0$$
 and $l^2=m^2+n^2$ is (1) $rac{\pi}{3}$ (2) $rac{\pi}{4}$

(3)
$$\frac{\pi}{6}$$
 (4)
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

 π

2

Answer: A

Watch Video Solution

15. The locus of the foot of prependicular drawn from the center of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is

A.
$$\left(x^2-y^2
ight)^2=6x^2+2y^2$$

B. $\left(x^2-y^2
ight)^2=6x^2-2y^2$
C. $\left(x^2+y^2
ight)^{2=6x^2+2y^2}$

D.
$$\left(x^2+y^2
ight)^2=6x^2-2y^2$$

Answer: C

16. If f and g are differentiable function in [0, 1] satisfying f (0) = 2 = g(1), g(0) = 0 and f (1) = 6, then for some $c \in (0, 1)$

A. 2f (c) = g(c)

C. f '(c) = g'(c)

D. f '(c) = 2g'(c)

Answer: D

17. The integral $\int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$ is equal to A. $(x - 1)e^{\left(x + \frac{1}{x}\right)} + C$ B. $xe^{\left(x + \frac{1}{x}\right)} + C$ C. $(x + 1)e^{\left(x + \frac{1}{x}\right)} + C$ D. $-xe^{\left(x + \frac{1}{x}\right)} + C$

Answer: B

Watch Video Solution

18. If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to (1) $\left(16, \frac{251}{3}\right)$ (3) $\left(14, \frac{251}{3}\right)$ (2) $\left(14, \frac{272}{3}\right)$ (4) $\left(16, \frac{272}{3}\right)$

A.
$$\left(16, \frac{251}{3}\right)$$

B. $\left(14, \frac{251}{3}\right)$
C. $\left(14, \frac{272}{3}\right)$
D. $\left(16, \frac{272}{3}\right)$

Answer: D

19. An equation of a plane parallel to the plane x - 2y + 2z - 5 = 0 and at a unit distance from the origin is

A. x - 2y + 2z = 3

B. x - 2y + 2z + 1= 0

C. x - 2y + 2z - 1= 0

D. x - 2y + 2z + 5 = 0

Answer: A

Watch Video Solution

20. Three numbers are chosen at random without replacement from {1, 2, 3, 8}. The probability that their minimum is 3, given that their maximum is 6, is (1) $\frac{3}{8}$ (2) $\frac{1}{5}$ (3) $\frac{1}{4}$ (4) $\frac{2}{5}$

Answer: B

21. The number of real number λ for which the equality

$$rac{\sin(\lambdalpha)}{\sinlpha} - rac{\cos(\lambdalpha)}{\coslpha} = \lambda - 1$$
,

holds for all real lpha which are not integral multiples of $\pi/2$ is-

A. 1 B. 2 C. 3

D. infinite

Answer: B

Watch Video Solution

22. Suppose a parabola $y = ax^2 + bx + c$ has two x intercepts, one negative, and its vertex is (2,-2). Then which of the following is

true ?

A. ab > 0B. bc > 0C. ac > 0D. a + b + c > 0

Answer: B

D Watch Video Solution

23. The larger of two angles made with the X-axis of a straight line drawn through (1, 2) so that it intersects the line x + y = 4 at a paint distant $\sqrt{6}/3$ from the point (1, 2) is

A. 60°

B. 75°

C. $105\,^\circ$

D. none of these

Answer: B

Watch Video Solution

24. The point ([P + 1], [P]) (where, [x] is the greatest integer function) lying inside the region bounded by the circle $x^2 + y^2 - 2x - 15$ =0 and $x^2 + y^2 - 2x - 7 = 0$, then

A.
$$P \in [\,-1,2) - \{0,1\}$$

B. $P \in [\,-1,0) \cup (0,1) \cup (1,2]$

 $\mathsf{C}.\,P\in(\,-\,1,\,2)$

D. none of these

Answer: D

25. Solution of the equation $rac{dy}{dx}=e^{x-y}(e^x-e^y)$ is equal to

A.
$$e^y = e^x - 1ce^{-e^x}$$

B.
$$e^{y-x} = 1 + ce^{-e^x}$$

C. $e^{x} + e^{y} = ce^{-e^{x}}$

D. none of these

Answer: A

Watch Video Solution

26. The area bounded by two branches of the curve $(y-x)^2 = x^3$ and x = 1 equals (A) $\frac{3}{5}$ (B) $\frac{5}{4}$ (C) $\frac{6}{5}$ (D) $\frac{4}{5}$ A. $\frac{5}{4}$ sq unit

B.
$$\frac{2}{2}$$
 sq unit
C. $\frac{1}{4}$ sq unit
D. $\frac{4}{5}$ sq unit

Answer: D

27. The least value of the function $f(x) = \int_0^x (3\sin x + 4\cos x) dx$ on the interval $\left[\frac{5\pi}{4}, \frac{4\pi}{3}\right]$ is A. $\frac{3}{2} - \frac{\sqrt{3}}{2}$

2 2 B. $\frac{5 - 4\sqrt{3}}{2}$ C. $\frac{7 - 4\sqrt{3}}{2}$ D. $\frac{9 - 4\sqrt{3}}{2}$

Answer: D

28. If z_1 and \overline{z}_1 represent adjacent vertices of a regular polygon of n sides whose centre is origin and if $\frac{Im(z_1)}{Re(z_1)} = \sqrt{2} - 1$ then n is equal to:

A. 8 B. 16 C. 18

D. 24

Answer: A

29. In the expansion of $ig(1+x+x^3+x^4ig),\,$ the coefficient of x^4

is $40C_4$ b. $10C_4$ c. 210 d. 310

A. 235

B. 310

C. 285

D. 325

Answer: B

30. A person writes letters to six friends and addresses the corresponding envelopes. Let x be the number of ways so that atleast two of the letters are in wrong envelopes and y be the

number of ways so that all the letters are in wrong envelopes. Then, x-y is equal to

A. 719

B. 265

C. 454

D. 720

Answer: C

31. If
$$x = \log_5 3 + \log_7 5 + \log_9 7$$
,then x is $\ \geq \ ?$

A.
$$x>rac{3}{2}$$

B. $x>rac{1}{\sqrt[2]{2}}$
C. $x>rac{3}{\sqrt[3]{2}}$

D. $x > \sqrt[3]{2}$

Answer: C

32. Let pandq be the roots of the equation $x^2 - 2x + A = 0$ and let rands be the roots of the equation $x^2 - 18x + B = 0$. If `p

D.3, 77

Answer: C

33. Let $a, b, c \in R$ and the system of equations (1-a)x + y + z = 0, x + (1-b)y + z = 0, x + y + (1-c)z = 0has infinitely many solutions then the minimum value of 'abc' is

A. $3\sqrt{3}$

B. 9

C. 27

D. 3

Answer: C

Watch Video Solution

34. If A is a 3 imes 3 non-singular matrix such that $\mathrm{AA'}=A'A$ and

 $B = A^{-1}A'$, then BB' equals:

A. $\left(B^{\,-\,1}
ight)$

B. I+B

C. I

D. B^{-1}

Answer: C

35. If
$$\sin^{-1}x + \tan^{-1}x = \frac{\pi}{2}$$
, then prove that $2x^2 + 1 = \sqrt{5}$

A. $\sqrt{5}$ B. $\frac{\sqrt{5}-1}{2}$

C. 2

D. $rac{\sqrt{5}+1}{2}$

Answer: A

36. Find the number of solution of the equations

 $|\cos x| = [x]$, (where [.] denotes the greatest integer function).

A. 0

B. 2

C. 1

D. infinitely many

Answer: A

37. Let $\cos(lpha+eta)=rac{4}{5}$ and let $\sin(lpha-eta)=rac{5}{13},$ where $0\leqlpha,$ $eta=rac{\pi}{4}.$ Thentan 2lpha=

A.
$$\frac{25}{7}$$

B. $\frac{25}{16}$
C. $\frac{56}{33}$
D. $\frac{19}{2}$

Answer: C

38. Cards are drawn one-by-one at random from a well-shuffled pack of 52 playing cards until 2 aces are obtained from the first time. The probability that 18 draws are obtained for this is 3/34 b. 17/455 c. 561/15925 d. none of these

A. 3/34

 $B.\,17/455$

C.
$$\frac{561}{15925}$$

D. none of these

Answer: C

39. If
$$a = \hat{i} + 2\hat{j} + 3\hat{k}, b = -\hat{i} + 2\hat{j} + \hat{k}$$
 and $c = 3\hat{i} + \hat{j}$. If

 $(a+b)\perp c$, then t is equal to

A. 0

B. 1

C. 5

D. 3

Answer: C

40. Let $f(x) = x[x], x \not\in Z$ [.] denotes greatest integer function),

then f (x) is equal to

A. 2x

B. [x]

C. 2 [x]

D. none of these

Answer: B

41. The difference of maximum and minimum values of $f(x) = x^2 e^{-x}$ is A. e $\mathsf{B.1}/e$ $\mathsf{C.1}-\frac{1}{e}$ $\mathsf{D}.\,1+\frac{1}{e}$ Answer: B Watch Video Solution

42. If
$$f'(x) = f(x) + \int_0^1 f(x) \, dx$$
 and given $f(0) = 1$, then $\int f(x) dx$ is equal to :

A.
$$rac{2e^x}{3-e}+rac{1-e}{3-e}$$

B.
$$\frac{e^x}{3-e} + \frac{1+e}{1-e}$$

C. $\frac{3e^x}{2-e} + \frac{1+e}{1-e}$
D. $\frac{3e^x}{2-e} + \frac{1-e}{3+e}$

Answer: A

43. The distance between the origin and the normal to the curve $y = e^{2x} + x^2$ at x = 0 is

A.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{2}{\sqrt{5}}$$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$\frac{1}{\sqrt{5}}$$

Answer: B

Watch Video Solution

44. Reflection of the line
$$\frac{x-1}{-1} = \frac{y-2}{3} = \frac{z-3}{1}$$
 in the plane $x+y+z=7$ is

A.
$$\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-4}{1}$$

B. $\frac{x-1}{-3} = \frac{y-2}{-1} = \frac{z-4}{1}$
C. $\frac{x-1}{-3} = \frac{y-2}{1} = \frac{z-4}{-1}$
D. $\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-4}{1}$

Answer: C

45. If x,y,z \in R , x +y+z =5

 $x^2 + y^2 + z^2 = 9$ then length of interval in which x lies is

A. 8/3

B.4/3

C. 2/3

 $\mathsf{D.}\,1/3$

Answer: B