©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2019 BITSAT

Part Iv Mathematics

1. If the length of the major axis of the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ is three times the length of minor axis, its accentricity is
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{\frac{2}{3}}$
D. $\frac{2 \sqrt{2}}{3}$

Answer: D

D Watch Video Solution

2. The value of $\sum_{m=1}^{n} \tan ^{-1}\left(\frac{2 m}{m^{4}+m^{2}+2}\right)$ is:
A. $\tan ^{-1}\left(\frac{n^{2}+n}{n^{2}+n+2}\right)$
B. $\tan ^{-1}\left(\frac{n^{2}-n}{n^{2}-n+2}\right)$
C. $\tan ^{-1}\left(\frac{n^{2}+n+2}{n^{2}+n}\right)$
D. none of these

Answer: A

- Watch Video Solution

3. Let $\left(2 x^{2}+3 x+4\right)^{10}=\sum_{r=0}^{20} a_{r} x^{r}$ then the value of $\frac{a_{8}}{a_{12}}$ is
A. 2
B. 4
C. 8
D. 16

Answer: B

- Watch Video Solution

4. Let $A B C$ be an acute-angled triangle and let D be the midpoint of $B C$. If $A B=A D$, then $\tan (B) / \tan (C)$ equals
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 2
D. 3

Answer: D

D Watch Video Solution

5. Suppose the limit $\mathrm{L}=\lim _{n \rightarrow \infty} \sqrt{n} \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} \mathrm{dx}$ exists and is larger than $\frac{1}{2}$ then
A. $\frac{1}{2}<L<2$
B. $2<L<3$
C. $3<L<4$
D. $L \geq 4$
6. In the real number system the equation
$\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has
A. No solution
B. Exactly two distinct solution
C. Exactly four distinct solution
D. Infinitely many solution

Answer: D

- Watch Video Solution

7. If system of equation $a x+y+z=a, x+b y+z=b$ and $x+y+c z=$ c is inconsistent, then which of the following is correct?
A. $a b c-a-b-c+2=0$
B. $a b c-a-b-c+3=0, a=1$
C. $a b c-a-b-c+3=0$
D. $a b c-a-b-c+2=0, a \neq 1, b \neq 1, c \neq 1$

Answer: D

- Watch Video Solution

8. A die is thrown 7 times. What is the chance that an odd number turns up (i) exactly 4 times (ii) at least 4 times
A. $\frac{1}{2}$
B. $\frac{31}{64}$
C. $\frac{51}{128}$
D. $\frac{35}{128}$

- Watch Video Solution

9. The equation of plane containing line $x-y=1, z=1$ and parallel to $\frac{x}{2}-\frac{z}{3}=1, y=3$ is
A. $3 x+3 y-2 z=1$
B. $3 x-3 y-2 z=1$
C. $3 x+3 y+2 z=1$
D. $3 x+3 y+2 z=-1$

Answer: B

D View Text Solution

10. If $\left(1+x+x^{2}\right)^{20}=\sum_{r=0}^{40} a_{r} . x^{r}$ then $\sum_{r=0}^{39}(-1)^{r} . A_{r} . A_{r+1}$ equal to
A. 79
B. $2^{39} \cdot{ }^{78} C_{39}$
C. $3^{39} \cdot{ }^{78} C_{39}$
D. 0

Answer: D

- View Text Solution

11. The value of $\lim _{x \rightarrow \frac{3 \pi}{4}} \frac{4 \sin ^{2} x \cos x-\cos x+\sin x}{\sin x+\cos x}$ is equal to
A. -1
B. 0
C. 1
D. none of these

Answer: A

- Watch Video Solution

12. If a, b, c are non-coplaner vectors such that $b \times c=a, c \times a=b, a \times b=c$, then which of the following is

not TRUE?

A. $|a|-|b|=0$
B. $|\mathrm{a}|=|\mathrm{b}|=|\mathrm{c}|=2$
C. $[\mathrm{abc}]=1$
D. $|a||b||c|=1$

Watch Video Solution

13. The value of λ for which the loci arg $z=\frac{\pi}{6}$ and $|z-2 \sqrt{3} i|=\lambda$ on the argand plane touch each other is
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

14. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$ (4) $\frac{\pi}{2}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

15. The locus of the foot of prependicular drawn from the center of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is
A. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
C. $\left(x^{2}+y^{2}\right)^{2=6 x^{2}+2 y^{2}}$
D. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$

Answer: C

- Watch Video Solution

16. If f and g are differentiable function in $[0,1]$ satisfying $f(0)=2$
$=g(1), g(0)=0$ and $f(1)=6$, then for some $c \in(0,1)$
A. $2 f(c)=g(c)$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)$
C. $f^{\prime}(c)=g^{\prime}(c)$
D. $\mathrm{f}^{\prime}(\mathrm{c})=2 \mathrm{~g}^{\prime}(\mathrm{c})$

Answer: D

17. The integral $\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ is equal to
A. $(x-1) e^{\left(x+\frac{1}{x}\right)}+C$
B. $x e^{\left(x+\frac{1}{x}\right)}+C$
C. $(x+1) e^{\left(x+\frac{1}{x}\right)}+C$
D. $-x e^{\left(x+\frac{1}{x}\right)}+C$

Answer: B

- Watch Video Solution

18. If the coefficients of x^{3} and x^{4} in the expansion of $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ in powers of x are both zero, then (a, b) is equal to (1) $\left(16, \frac{251}{3}\right)$ (3) $\left(14, \frac{251}{3}\right)$ (2) $\left(14, \frac{272}{3}\right)$
$\left(16, \frac{272}{3}\right)$
A. $\left(16, \frac{251}{3}\right)$
B. $\left(14, \frac{251}{3}\right)$
C. $\left(14, \frac{272}{3}\right)$
D. $\left(16, \frac{272}{3}\right)$

Answer: D

- Watch Video Solution

19. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z=3$
B. $x-2 y+2 z+1=0$
C. $x-2 y+2 z-1=0$
D. $x-2 y+2 z+5=0$

- Watch Video Solution

20. Three numbers are chosen at random without replacement from $\{1,2,3, \ldots . . .8\}$. The probability that their minimum is 3 , given that their maximum is 6 , is (1) $\frac{3}{8}$ (2) $\frac{1}{5}$ (3) $\frac{1}{4}$ (4) $\frac{2}{5}$
A. $\frac{3}{8}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{2}{5}$

Answer: B

- Watch Video Solution

21. The number of real number λ for which the equality $\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$,
holds for all real α which are not integral multiples of $\pi / 2$ is-
A. 1
B. 2
C. 3
D. infinite

Answer: B

- Watch Video Solution

22. Suppose a parabola $y=a x^{2}+b x+c$ has two x intercepts, one negative, and its vertex is $(2,-2)$. Then which of the following is true?
A. $a b>0$
B. $b c>0$
C. $a c>0$
D. $a+b+c>0$

Answer: B

D Watch Video Solution

23. The larger of two angles made with the X -axis of a straight line drawn through $(1,2)$ so that it intersects the line $x+y=4$ at a paint distant $\sqrt{6} / 3$ from the point $(1,2)$ is
A. 60°
B. 75°
C. 105°
D. none of these

Answer: B

- Watch Video Solution

24. The point ([P + 1], [P]) (where, $[x]$ is the greatest integer function) lying inside the region bounded by the circle $x^{2}+y^{2}-2 x-15=0$ and $x^{2}+y^{2}-2 x-7=0$, then
A. $P \in[-1,2)-\{0,1\}$
B. $P \in[-1,0) \cup(0,1) \cup(1,2]$
C. $P \in(-1,2)$
D. none of these

Answer: D

25. Solution of the equation $\frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right)$ is equal to
A. $e^{y}=e^{x}-1 c e^{-e^{x}}$
B. $e^{y-x}=1+c e^{-e^{x}}$
C. $e^{x}+e^{y}=c e^{-e^{x}}$
D. none of these

Answer: A

- Watch Video Solution

26. The area bounded by two branches of the curve $(y-x)^{2}=x^{3}$ and $x=1$ equals (A) $\frac{3}{5}$ (B) $\frac{5}{4}$ (C) $\frac{6}{5}$ (D) $\frac{4}{5}$
A. $\frac{5}{4}$ sq unit
B. $\frac{2}{2}$ sq unit
C. $\frac{1}{4}$ sq unit
D. $\frac{4}{5}$ sq unit

Answer: D

- Watch Video Solution

27. The least value of the function $\mathrm{f}(\mathrm{x})=\int_{0}^{x}(3 \sin x+4 \cos x) d x$ on the interval $\left[\frac{5 \pi}{4}, \frac{4 \pi}{3}\right]$ is
A. $\frac{3}{2}-\frac{\sqrt{3}}{2}$
B. $\frac{5-4 \sqrt{3}}{2}$
C. $\frac{7-4 \sqrt{3}}{2}$
D. $\frac{9-4 \sqrt{3}}{2}$

Answer: D

- Watch Video Solution

28. If z_{1} and \bar{z}_{1} represent adjacent vertices of a regular polygon of n sides whose centre is origin and if $\frac{\operatorname{Im}\left(z_{1}\right)}{\operatorname{Re}\left(z_{1}\right)}=\sqrt{2}-1$ then n is equal to:
A. 8
B. 16
C. 18
D. 24

Answer: A

29. In the expansion of $\left(1+x+x^{3}+x^{4}\right)$, the coefficient of x^{4} is ^ $40 C_{4}$ b. ^ $10 C_{4}$ c. 210 d .310
A. 235
B. 310
C. 285
D. 325

Answer: B

- Watch Video Solution

30. A person writes letters to six friends and addresses the corresponding envelopes. Let x be the number of ways so that atleast two of the letters are in wrong envelopes and y be the
number of ways so that all the letters are in wrong envelopes.
Then, $x-y$ is equal to
A. 719
B. 265
C. 454
D. 720

Answer: C

D Watch Video Solution

31. If $x=\log _{5} 3+\log _{7} 5+\log _{9} 7$,then x is \geq ?
A. $x>\frac{3}{2}$
B. $x>\frac{1}{\sqrt[2]{2}}$
C. $x>\frac{3}{\sqrt[3]{2}}$
D. $x>\sqrt[3]{2}$

Answer: C

D Watch Video Solution

32. Let $p a n d q$ be the roots of the equation $x^{2}-2 x+A=0$ and let $r a n d s$ be the roots of the equation $x^{2}-18 x+B=0$. If p

$$
\text { A. }-3,-77
$$

B. $3,-77$
C. $-3,77$
D. 3,77

Answer: C

33. Let $a, b, c \in R$ and the system of equations $(1-a) x+y+z=0, x+(1-b) y+z=0, x+y+(1-c) z=0$
has infinitely many solutions then the minimum value of 'abc' is
A. $3 \sqrt{3}$
B. 9
C. 27
D. 3

Answer: C

- Watch Video Solution

34. If A is a 3×3 non-singular matrix such that $\mathrm{AA}^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$, then BB^{\prime} equals:
A. $\left(B^{-1}\right)$
B. I+B
C. I
D. B^{-1}

Answer: C

D Watch Video Solution

35. If $\sin ^{-1} x+\tan ^{-1} x=\frac{\pi}{2}$, then prove that
$2 x^{2}+1=\sqrt{5}$
A. $\sqrt{5}$
B. $\frac{\sqrt{5}-1}{2}$
C. 2
D. $\frac{\sqrt{5}+1}{2}$

- Watch Video Solution

36. Find the number of solution of the equations $|\cos x|=[x]$, (where [.] denotes the greatest integer function $)$.
A. 0
B. 2
C. 1
D. infinitely many

Answer: A

37. Let $\cos (\alpha+\beta)=\frac{4}{5}$ and let $\sin (\alpha-\beta)=\frac{5}{13}$, where $0 \leq \alpha$, $\beta=\frac{\pi}{4}$. Thentan $2 \alpha=$
A. $\frac{20}{7}$
B. $\frac{25}{16}$
C. $\frac{56}{33}$
D. $\frac{19}{2}$

Answer: C

- Watch Video Solution

38. Cards are drawn one-by-one at random from a well-shuffled pack of 52 playing cards until 2 aces are obtained from the first time. The probability that 18 draws are obtained for this is $3 / 34$
b. $17 / 455$ c. $561 / 15925 \mathrm{~d}$. none of these
A. $3 / 34$
B. $17 / 455$
C. $\frac{561}{15925}$
D. none of these

Answer: C

- Watch Video Solution

39. If $a=\hat{i}+2 \hat{j}+3 \hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}$. If
$(a+b) \perp c$, then t is equal to
A. 0
B. 1
C. 5
D. 3

Answer: C

- Watch Video Solution

40. Let $\mathrm{f}(\mathrm{x})=x[x], x \not \subset Z$ [.] denotes greatest integer function), then $f(x)$ is equal to
A. $2 x$
B. $[x]$
C. $2[\mathrm{x}]$
D. none of these

Answer: B

41. The difference of maximum and minimum values of $f(x)=x^{2} e^{-x}$ is
A. e
B. $1 / e$
C. $1-\frac{1}{e}$
D. $1+\frac{1}{e}$

Answer: B

- Watch Video Solution

42. If $f^{\prime}(x)=f(x)+\int_{0}^{1} f(x) \mathrm{dx}$ and given $f(0)=1$, then $\int f(x) d x$ is equal to :
A. $\frac{2 e^{x}}{3-e}+\frac{1-e}{3-e}$
B. $\frac{e^{x}}{3-e}+\frac{1+e}{1-e}$
C. $\frac{3 e^{x}}{2-e}+\frac{1+e}{1-e}$
D. $\frac{3 e^{x}}{2-e}+\frac{1-e}{3+e}$

Answer: A

- Watch Video Solution

43. The distance between the origin and the normal to the curve
$y=e^{2 x}+x^{2}$ at $x=0$ is
A. $\frac{2}{\sqrt{3}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{5}}$

Answer: B

D Watch Video Solution

44. Reflection of the line $\frac{x-1}{-1}=\frac{y-2}{3}=\frac{z-3}{1}$ in the plane $x+y+z=7$ is
A. $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-4}{1}$
B. $\frac{x-1}{-3}=\frac{y-2}{-1}=\frac{z-4}{1}$
C. $\frac{x-1}{-3}=\frac{y-2}{1}=\frac{z-4}{-1}$
D. $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-4}{1}$

Answer: C

- Watch Video Solution

45. If $x, y, z \in R, x+y+z=5$

$x^{2}+y^{2}+z^{2}=9$ then length of interval in which x lies is
A. $8 / 3$
B. $4 / 3$
C. $2 / 3$
D. $1 / 3$

Answer: B

- Watch Video Solution

