© 'doubtnut

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2018

Mathematics Part lv

1. The coefficient of x^{-n} in $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$ is
A. 0
B. 1
C. 2^{n}
D. 2 n

Answer: B
2. Find the value of the greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$.
A. $\frac{26840}{9}$
B. $\frac{24840}{9}$
C. $\frac{25840}{9}$
D. None of these

Answer: C

- Watch Video Solution

3. nth roots of Unity
A. AP
B. GP
C. HP
D. None of these

Answer: B

- Watch Video Solution

4. If $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right], a b c=1, A^{T} A=l$, then find the value of $a^{3}+b^{3}+c^{3}$.
A. 2
B. 1
C. 0
D. 5

Answer: A
5. If $x^{2}=\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 1 \\ \sin \theta & \cos \theta & 2\end{array}\right|$, then the value of $4 x^{2}+x \sin \frac{3 \pi}{2}+5$ is
A. $13-\sqrt{2}$
B. $13+\sqrt{2}$
C. $\sqrt{2}-13$
D. Both a and b

Answer: D

- Watch Video Solution

6. The sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of $\Delta A B C$ are in G.P., where loga-log $2 \mathrm{~b}, \log 2 \mathrm{~b}$ $\log 3 \mathrm{c}, \log 3 \mathrm{c}-\log \mathrm{a}$ are in A.P., then the $\triangle A B C$ is
A. equilateral
B. right angled
C. acute angled
D. obtuse angled

Answer: D

- Watch Video Solution

7. If $\Sigma_{r=1}^{n} t_{r}=\frac{n(n+1)(n+2)(n+3)}{8}$, where t_{r} denotes the rth term
of a series, then $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{t_{r}}$ is
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: C

O
 Watch Video Solution

8. Which of the following statement is a tautology?
A. $(p \vee q) \vee(\sim p)$
B. $(\sim q \wedge p) \vee(p \vee \sim p)$
C. Both a and b
D. None of the above

Answer: C

- Watch Video Solution

9. A parallelogram is cut by two sets of m lines parallel to its sides. The number of parallelogram then formed is
A. ${ }^{m} C_{2} \times{ }^{m} C_{2}$
B. $2\left({ }^{m+2} C_{2}\right)$
C. $\left({ }^{m+2} C_{2}\right)^{2}$
D. None of these

- Watch Video Solution

10. The inverse of the functions $f(x)=\log _{2}\left(x+\sqrt{x^{2}+1}\right)$ is
A. $\frac{1}{2}\left(a^{x}-a^{-x}\right)$
B. not defined for all x
C. defined for $x>0$
D. none of these

Answer: A

Watch Video Solution

11. The value of $S=\Sigma_{n=1}^{\infty} \tan ^{-1} \frac{2 n}{n^{4}+n^{2}+2}$ is equal to
A. $\frac{\pi}{2}$
B. π
C. $\frac{\pi}{4}$
D. None of these

Answer: C

D Watch Video Solution

12.

A. $\frac{1}{2}$
B. $\frac{1}{5}$
C. $\frac{3}{4}$
D. $\frac{-3}{4}$

Answer: A

13. A line makes angles α, β, γ with the coordinate axes. If $\alpha+\beta=\frac{\pi}{2}$, then $(\cos \alpha+\cos \beta+\cos \gamma)^{2}$ is equal to
A. $1+\cos 2 \alpha$
B. $1-\sin 2 \alpha$
C. $1+\sin 2 \alpha$
D. None of these

Answer: C

- Watch Video Solution

14. Straight lines $3 x+4 y=5$ and $4 x-3 y=15$ intersect at the point A. If point B and C are chosen on these two lines such that $A B=A C$, then the possible equation of the line $B C$ passing through the point $(1,2)$ is

$$
\text { A. } x+7 y+13=0 \text { or } 7 x+y+9=0
$$

B. $x+7 y+13=0$ or $7 x+2 y+7=0$
C. $x-7 y+13=0$ or $7 x+y-9=0$
D. None of these

Answer:

- Watch Video Solution

15. Normals drawn to $y^{2}=4 a x$ at the points where it is intersected by the line $y=m x+c$ intersected at P. Coordinates of foot of the another normal drawn to the parabola from the point ' P ' is
A. $\left(\frac{a}{m^{2}},-\frac{2 a}{m}\right)$
B. $\frac{9}{m},-\frac{6 a}{m}$
C. $\left(a m^{2},-2 a m\right)$
D. $\left(\frac{4 a}{m^{2}},-\frac{4 a}{m}\right)$

Answer: D

16. The area of the triangle formed by joining the origin to the point of intersection of the line $x \sqrt{5}+2 y=3 \sqrt{5}$ and the circle $x^{2}+y^{\circ}=10$ is

3 (b) 4 (c) 5 (d) 6
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

17. Radius of the largest circle passing through the focus of the parabola $y^{2}=4 x$ and lying inside the parabola is...
A. 8
B. 4
C. 2
D. 5

Answer: B

- Watch Video Solution

18. A tangent drawn to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $P\left(\frac{\pi}{6}\right)$ forms a triangle of area $3 a^{2}$ square units, with coordinate axes. If the eccentricity of hyperbola is e , then the value of $e^{2}-9$ is
A. 9
B. 10
C. 11
D. 8

- Watch Video Solution

19. If the sum of squares of distances of a point from the planes $x+y+z=0, x-z=0$ and $x-2 y+z=0$ is p^{2}, then locus of the point is
A. $x^{2}+z^{2}=p^{2}$
B. $x^{2}+2 x y+y^{2}+z^{2}=p^{2}$
C. $x+y+z=p^{2}$
D. $x^{2}+y^{2}+z^{2}=p^{2}$

Answer: D

- Watch Video Solution

20. Line $\frac{(x+1)}{\lambda}=y-1=\frac{(z+2)}{-4}$ is perpendicular to $2 x+2 y-8 z+5=0$, then λ is
A. 1
B. -4
C. -5
D. -3

Answer: A

- Watch Video Solution

21. OPQR is a square with M and N as the middle points of the sides $P Q$ and $Q R$, respectively. The ratio of the areas of the square and the triangle OMN is
A. $4: 1$
B. 2: 1
C. $8: 3$
D. 4: 3

Answer: C

- Watch Video Solution

22. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D

23. If e_{1} and e_{2} are the eccentricities of a hyperbola $3 x^{2}-2 y^{2}=25$ and its conjugate, then
A. $e_{10^{2}+e_{2}^{2}=2}$
B. $e_{1}^{2}+e_{2}^{2}=4$
C. $e_{1}+e_{2}=4$
D. $e_{1}+e_{2}=\sqrt{2}$

Answer: B

- Watch Video Solution

24. Let $f: R \rightarrow R$ be a function satisfying $f(x+y)=f(x)+2 y^{3}+k x y$ for all $x, y \in R$. If $\mathrm{f}(1)=2$ and $\mathrm{f}(2)=8$, then $\mathrm{f}(\mathrm{x})$ is equal to
A. $2 x^{2}$
B. $6 x-4$
C. $x^{2}+3 x-2$
D. $-x^{2}+9 x-6$

Answer: A

- Watch Video Solution

25. If the planes $\vec{r} \cdot(2 \hat{i}-\lambda \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(\lambda \hat{i}+5 \hat{j}-\hat{k})=5$ are perpendicular to each other then value of $\lambda^{2}+\lambda$ is
A. 0
B. 2
C. 1
D. 3

Answer: A

26. Solution of differential equation $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$ is equal to
A. $\log \left(2+\sec \frac{x+y}{2}\right)=x+C$
B. $\log (1+\tan (x+y))=x+C$
C. $\log \left(1+\tan \frac{x+y}{2}\right)=y+C$
D. $\log \left(1+\tan \frac{x+y}{2}\right)=x+C$

Answer: D

- Watch Video Solution

27. Find the value of α so that $(\lim)_{x 0} \frac{1}{x^{2}}\left(e^{\alpha x}-e^{x}-x\right)=\frac{3}{2}$
A. 1
B. 0
C. 4

D. 2

Answer: D

- Watch Video Solution

28. An inverted conical flask is being filled with water at the rate of $3 \mathrm{~cm}^{3}$ $/ \mathrm{sec}$. The height of the flask is 10 cm and the radius of the base is 5 cm . How fast is the water level rising when the level is 4 cm ?
A. $\frac{4}{3} \pi \mathrm{~cm} / \mathrm{sec}$
B. $\frac{3}{4 \pi} \mathrm{~cm} / \mathrm{sec}$
C. $\frac{3 \pi}{4} \mathrm{~cm} / \mathrm{sec}$
D. $\frac{4}{3 \pi} \mathrm{~cm} / \mathrm{sec}$

Answer: B

D Watch Video Solution

29. The equation of the curve whose slope at any point is equal to $y+2 x$ and which passes through the origin is
А. $y=2(x-1)$
B. $y=2\left(e^{x}-x-1\right)$
C. $y=2\left(e^{x}-1\right)$
D. $y=2\left(e^{x} x-1\right)$

Answer: B

- Watch Video Solution

30. Let $f(x)= \begin{cases}x^{p} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
then $f(x)$ is continuous but not differentiable at $x=0$, if
A. $p<0$
B. $p=0$
C. $0<p \leq 1$
D. $p \geq 1$

Answer: C

- Watch Video Solution

31. The solution $y(x)$ of the differential equation $\frac{d^{2} y}{d x^{2}}=\sin 3 x+e^{x}+x^{2}$ when $y_{1}(0)=1$ and $y(0)=0$ is
A. $-\frac{\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x-1$
B. $-\frac{\sin 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x$
C. $-\frac{\cos 3 x}{9}+e^{x}+\frac{x^{4}}{12}+\frac{1}{3} x+1$
D. None of the above

Answer: A

- Watch Video Solution

32. For which interval the given function $f(x)=2 x^{3}-9 x^{2}+12 x+1$ is decreasing?
A. $(-2, \infty)$
B. $(-2,-1)$
C. $(-\infty,-1)$
D. $(-\infty,-2)$ or $(-1, \infty)$

Answer: D

- Watch Video Solution

33. If θ is the angle between the vectors $4(\hat{i}-\hat{k})$ and $\hat{i}+\hat{j}+\hat{k}$, then what is $(\sin \theta+\cos \theta)$ equal to ?
A. 0
B. $\frac{1}{2}$
C. 1

D. 2

Answer: C

- Watch Video Solution

34. In a $\triangle A B C, D, E, F$ are the mid -points of the sides BC, CA and AB
respectively, the vector $A D$ is equal to
A. $\overrightarrow{B E}+\overrightarrow{C F}$
B. $\overrightarrow{B E}-\overrightarrow{C F}$
c. $\overrightarrow{C F}-\overrightarrow{B E}$
D. $-\overrightarrow{B E}-\overrightarrow{C F}$

Answer: D

- Watch Video Solution

35. The arithmetic mean of a set of observations is \bar{X}. If each observation is divided by α and then is increased by 10 , then the mean of the new series is
A. $\frac{\vec{X}}{\alpha}$
B. $\frac{\vec{X}+10}{\alpha}$
C. $\frac{\vec{X}+10 \alpha}{\alpha}$
D. $\alpha \vec{X}+10$

Answer: C

- Watch Video Solution

36. If h is the altitude of a parallelopiped determined by the vectors a, b, c and the base is taken to be the parallelogram determined by a and b where $a=\hat{i}+\hat{j}+\hat{k}, b=2 \hat{i}+4 \hat{j}-\hat{k}$ and $c=\hat{i}+\hat{j}+3 \hat{k}$, then the value of $19 h^{2}$ is
A. 19
B. 16
C. 8
D. None of these

Answer: C

- Watch Video Solution

37. The mean and variance of a Binomial distribution $(\overrightarrow{B D})$ for 3 trials is
A. $(0.2+0.8)^{5}$
B. $(0.3+0.7)^{5}$
C. $(0.4+0.6)^{5}$
D. None of these

Watch Video Solution

38.

Let
$P(x)=\int \frac{d x}{e^{x}+8 e^{-x}+4 e^{-3 x}}, Q(x)=\int \frac{d x}{e^{3 x}+8 e^{x}+4 e^{-x}}$ and $R(x)=$
. If $R(x)=\frac{1}{2} A\left(\frac{B+2 e^{-x}}{C}\right)+K$, then the value of $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is
A. $\left(\tan ^{-1}, 2, e^{x}\right)$
B. $\left(\tan ^{-1}, e^{x}, 2\right)$
C. $\left(\tan ^{-1}, \frac{1}{2}, \frac{1}{e^{x}}\right)$
D. $\left(\tan ^{-1}, \frac{1}{e^{x}}, \frac{1}{2}\right)$

Answer: B

- Watch Video Solution

39. $\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$
A. $\log 2$
B. $\frac{\pi}{2}-\log 2$
C. $\frac{\pi}{2}+\log 2$
D. $-\log 2$

Answer: B

D Watch Video Solution

40. The area of the region included between the curves
$x^{2}+y^{2}=a^{2}$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a>0)$ is
A. $\left(\pi-\frac{2}{3}\right) a^{2}$ sq units
B. $\left(\frac{2}{3}-\pi\right) a^{2}$ sq units
C. $\frac{2}{3} \pi a^{2}$ sq units
D. $\left(\pi+\frac{2}{3}\right) a^{2}$ sq units

Answer: A

41. $A a n d B$ are two independent events. The probability that both AandB occur is $1 / 6$ and the probability that neither of them occurs is $1 / 3$. Find the probability of the occurrence of A.
A. 0 or 1
B. $\frac{1}{2}$ or $\frac{1}{3}$
C. $\frac{1}{2}$ or $\frac{1}{4}$
D. $\frac{1}{3}$ or $\frac{1}{4}$

Answer: B

- Watch Video Solution

42. In a test, an examinee either guesses or copies or knows the answer to a multiple choice question with four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that he copies the answer is $1 / 6$. The probability that his answer is correct, given that he copied it, is $1 / 8$.

Find the probability that he knew the answer to the question, given that be correctly answered it.
A. $\frac{27}{29}$
B. $\frac{26}{29}$
C. $\frac{25}{29}$
D. $\frac{24}{29}$

Answer: D

- Watch Video Solution

43. If $p: 4$ is an even prime number, $q: 6$ is a divisor of 12 and r : the HCF of 4 and 6 is 2 , then which of the following is correct ?
A. $(p \wedge q)$
B. $(p \vee q) \wedge \sim r$
C. $\sim(q \wedge r) \vee p$
D. $\sim p \vee(q \wedge r)$

Answer: D

- Watch Video Solution

44. The maximum value of $Z=4 x+2 y$ subject to the constraints
$2 x+3 y \leq 18, x+y \geq 10, x, y \geq 0$ is
A. 20
B. 36
C. 40
D. None of these

Answer: D

- Watch Video Solution

45. The coordinates of the point at which minimum value of $Z=7 x-8 y$ subject to constraints $x+y-20 \leq 0, y \geq 5, x \geq 0, y \geq 0$ is attained is
A. $(20,0)$
B. $(15,5)$
C. $(0,5)$
D. $(0,20)$

Answer: D

- Watch Video Solution

