

MATHS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2018

Mathematics Part Iv

1. The coefficient of
$$x^{-n}$$
 in $(1+x)^n \left(1+rac{1}{x}
ight)^n$ is

A. 0

B. 1

 $\mathsf{C}.\,2^n$

D. 2n

Answer: B

2. Find the value of the greatest term in the expansion of

$$\sqrt{3} \left(1 + rac{1}{\sqrt{3}}
ight)^{20}$$
A. $rac{26840}{9}$

B.
$$\frac{24840}{9}$$

C. $\frac{25840}{9}$

D. None of these

Answer: C

Watch Video Solution

3. nth roots of Unity

A. AP

B. GP

C. HP

D. None of these

Answer: B

4. If
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
, $abc = 1$, $A^T A = l$, then find the value of $a^3 + b^3 + c^3$.
A. 2
B. 1
C. 0
D. 5

Answer: A

5. If
$$x^2 = \begin{vmatrix} \sin\theta & \cos\theta & 0 \\ -\cos\theta & \sin\theta & 1 \\ \sin\theta & \cos\theta & 2 \end{vmatrix}$$
, then the value of $4x^2 + x\sin\frac{3\pi}{2} + 5$ is
A. $13 - \sqrt{2}$
B. $13 + \sqrt{2}$
C. $\sqrt{2} - 13$
D. Both a and b

Answer: D

Watch Video Solution

6. The sides a,b,c of ΔABC are in G.P., where loga-log2b,log2b-log3c,log3c-loga are in A.P., then the ΔABC is

A. equilateral

B. right angled

C. acute angled

D. obtuse angled

Answer: D

Watch Video Solution

7. If
$$\sum_{r=1}^{n} t_r = \frac{n(n+1)(n+2)(n+3)}{8}$$
, where t_r denotes the rth term of a series, then $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{t_r}$ is
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: C

8. Which of the following statement is a tautology?

A. $(p \lor q) \lor (\ensuremath{\,{}^{\sim}} p)$

 $\mathsf{B.}\left({\scriptstyle {\scriptstyle \sim}} q \wedge p \right) \lor \left(p \lor {\scriptstyle {\scriptstyle \sim}} p \right)$

C. Both a and b

D. None of the above

Answer: C

Watch Video Solution

9. A parallelogram is cut by two sets of m lines parallel to its sides. The

number of parallelogram then formed is

A. ${}^{m}C_{2} imes {}^{m}C_{2}$

B. $2{\binom{m+2}{2}C_2}$

C. $\binom{m+2}{2}C_2^2$

D. None of these

Answer: C

10. The inverse of the functions $f(x) = \log_2 \Bigl(x + \sqrt{x^2 + 1}\Bigr)$ is

A.
$$rac{1}{2}ig(a^x-a^{-x}ig)$$

B. not defined for all x

C. defined for x > 0

D. none of these

Answer: A

Watch Video Solution

11. The value of $S=\Sigma_{n=1}^\infty { ext{tan}^{-1}}rac{2n}{n^4+n^2+2}$ is equal to

A.
$$\frac{\pi}{2}$$

 $\mathsf{B.}\,\pi$

 $\mathsf{C}.\,\frac{\pi}{4}$

D. None of these

Answer: C

C.
$$\frac{3}{4}$$

D. $\frac{-3}{4}$

Answer: A

13. A line makes angles α , β , γ with the coordinate axes. If $\alpha + \beta = \frac{\pi}{2}$, then $(\cos \alpha + \cos \beta + \cos \gamma)^2$ is equal to A. $1 + \cos 2\alpha$ B. $1 - \sin 2\alpha$ C. $1 + \sin 2\alpha$ D. None of these

Answer: C

Watch Video Solution

14. Straight lines 3x + 4y = 5 and 4x - 3y = 15 intersect at the point A. If point B and C are chosen on these two lines such that AB= AC, then the possible equation of the line BC passing through the point (1,2) is

A.
$$x + 7y + 13 = 0$$
 or $7x + y + 9 = 0$

B. x + 7y + 13 = 0 or 7x + 2y + 7 = 0

C. x - 7y + 13 = 0 or 7x + y - 9 = 0

D. None of these

Answer:

Watch Video Solution

15. Normals drawn to $y^2 = 4ax$ at the points where it is intersected by the line y = mx + c intersected at P. Coordinates of foot of the another normal drawn to the parabola from the point 'P' is

A.
$$\left(\frac{a}{m^2}, -\frac{2a}{m}\right)$$

B. $\frac{9}{m}, -\frac{6a}{m}$
C. $\left(am^2, -2am\right)$
D. $\left(\frac{4a}{m^2}, -\frac{4a}{m}\right)$

Answer: D

16. The area of the triangle formed by joining the origin to the point of intersection of the line $x\sqrt{5} + 2y = 3\sqrt{5}$ and the circle $x^2 + y^\circ = 10$ is 3 (b) 4 (c) 5 (d) 6

A. 3 B. 4 C. 5 D. 6

Answer: C

17. Radius of the largest circle passing through the focus of the parabola

 $y^2 = 4x$ and lying inside the parabola is...

A. 8	
B. 4	
C. 2	
D. 5	

Answer: B

Watch Video Solution

18. A tangent drawn to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $P\left(\frac{\pi}{6}\right)$ forms a triangle of area $3a^2$ square units, with coordinate axes. If the eccentricity of hyperbola is e, then the value of $e^2 - 9$ is

A. 9

B. 10

C. 11

D. 8

Answer: D

19. If the sum of squares of distances of a point from the planes x + y + z = 0, x - z = 0 and x - 2y + z = 0 is p^2 , then locus of the point is

A.
$$x^2 + z^2 = p^2$$

B. $x^2 + 2xy + y^2 + z^2 = p^2$
C. $x + y + z = p^2$
D. $x^2 + y^2 + z^2 = p^2$

Answer: D

20.	Line	$rac{(x+1)}{\lambda}=y$	$y - 1 = \frac{(z)}{z}$	$(x+2)\over -4$	is	perpendicular	to
2x +	2y - 8z	+~5=0, ther	n λ is				
A.	1						
В.	-4						
C.	-5						
D.	-3						

Answer: A

21. OPQR is a square with M and N as the middle points of the sides PQ and QR, respectively. The ratio of the areas of the square and the triangle OMN is

A.4:1

B. 2:1

C. 8:3

D. 4:3

Answer: C

Watch Video Solution

22. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10

A.
$$\frac{31}{10}$$

B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D

23. If $e_1 \,$ and $\, e_2$ are the eccentricities of a hyperbola $\, 3x^2 - 2y^2 = 25$ and its conjugate, then

A. $e_{10^2+e_2^2=2}$ B. $e_1^2+e_2^2=4$ C. $e_1+e_2=4$ D. $e_1+e_2=\sqrt{2}$

Answer: B

Watch Video Solution

24. Let $f\colon R o R$ be a function satisfying $f(x+y)=f(x)+2y^3+kxy$ for all $x,y\in R$. If f(1)=2 and f(2)= 8, then f(x) is equal to

A. $2x^2$

B.6x - 4

C.
$$x^2 + 3x - 2$$

 $D_{x} - x^{2} + 9x - 6$

Answer: A

Watch Video Solution

25. If the planes
$$\overrightarrow{r}.\left(2\hat{i}-\lambda\hat{j}+3\hat{k}
ight)=0$$
 and $\overrightarrow{r}.\left(\lambda\hat{i}+5\hat{j}-\hat{k}
ight)=5$

are perpendicular to each other then value of $\lambda^2+\lambda$ is

A. 0

B. 2

C. 1

D. 3

Answer: A

26. Solution of differential equation

$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y) \text{ is equal to}$$

$$A. \log\left(2 + \sec\frac{x+y}{2}\right) = x + C$$

$$B. \log(1 + \tan(x+y)) = x + C$$

$$C. \log\left(1 + \tan\frac{x+y}{2}\right) = y + C$$

$$D. \log\left(1 + \tan\frac{x+y}{2}\right) = x + C$$

Answer: D

27. Find the value of
$$lpha$$
 so that $(\lim)_{x \stackrel{
ightarrow}{0}} rac{1}{x^2} (e^{lpha x} - e^x - x) = rac{3}{2}$

- A. 1
- Β.Ο

C. 4

Answer: D

28. An inverted conical flask is being filled with water at the rate of $3cm^3$ /sec. The height of the flask is 10cm and the radius of the base is 5cm. How fast is the water level rising when the level is 4cm?

A.
$$\frac{4}{3}\pi$$
 cm/sec
B. $\frac{3}{4\pi}$ cm/sec
C. $\frac{3\pi}{4}$ cm/sec
D. $\frac{4}{3\pi}$ cm/sec

Answer: B

29. The equation of the curve whose slope at any point is equal to y + 2xand which passes through the origin is

A.
$$y = 2(x - 1)$$

B. $y = 2(e^x - x - 1)$
C. $y = 2(e^x - 1)$

D. $y=2(e^xx-1)$

Answer: B

Watch Video Solution

30. Let
$$f(x)= egin{cases} x^p {
m sin} rac{1}{x} & x
eq 0 \ 0 & x=0 \end{cases}$$

then f(x) is continuous but not differentiable at x = 0, if

A.
$$p < 0$$

 $\mathsf{B.}\, p=0$

 $\mathsf{C.0}$

 $\mathsf{D}.\,p\geq 1$

Answer: C

Watch Video Solution

31. The solution y(x) of the differential equation $rac{d^2y}{dx^2}=\sin 3x+e^x+x^2$ when $y_1(0)=1$ and y(0)=0 is

A.
$$-\frac{\sin 3x}{9} + e^x + \frac{x^4}{12} + \frac{1}{3}x - 1$$

B. $-\frac{\sin 3x}{9} + e^x + \frac{x^4}{12} + \frac{1}{3}x$
C. $-\frac{\cos 3x}{9} + e^x + \frac{x^4}{12} + \frac{1}{3}x + 1$

D. None of the above

Answer: A

32. For which interval the given function $f(x) = 2x^3 - 9x^2 + 12x + 1$ is

decreasing?

A. $(-2, \infty)$ B. (-2, -1)C. $(-\infty, -1)$ D. $(-\infty, -2)$ or $(-1, \infty)$

Answer: D

Watch Video Solution

33. If heta is the angle between the vectors $4(\hat{i} - \hat{k})$ and $\hat{i} + \hat{j} + \hat{k}$, then what is $(\sin \theta + \cos \theta)$ equal to ?

A. 0

$$\mathsf{B}.\,\frac{1}{2}$$

C. 1

Answer: C

34. In a ΔABC , D, E, F are the mid -points of the sides BC, CA and AB respectively, the vector AD is equal to

A. $\overrightarrow{BE} + \overrightarrow{CF}$ B. $\overrightarrow{BE} - \overrightarrow{CF}$ C. $\overrightarrow{CF} - \overrightarrow{BE}$ D. $-\overrightarrow{BE} - \overrightarrow{CF}$

Answer: D

35. The arithmetic mean of a set of observations is \overline{X} . If each observation is divided by α and then is increased by 10, then the mean of the new series is

A.
$$\frac{\overrightarrow{X}}{\alpha}$$

B. $\frac{\overrightarrow{X} + 10}{\alpha}$
C. $\frac{\overrightarrow{X} + 10\alpha}{\alpha}$
D. $\alpha \overrightarrow{X} + 10$

Answer: C

Watch Video Solution

36. If h is the altitude of a parallelopiped determined by the vectors a,b,c and the base is taken to be the parallelogram determined by a and b where $a = \hat{i} + \hat{j} + \hat{k}$, $b = 2\hat{i} + 4\hat{j} - \hat{k}$ and $c = \hat{i} + \hat{j} + 3\hat{k}$, then the value of $19h^2$ is A. 19

B. 16

C. 8

D. None of these

Answer: C

37. The mean and variance of a Binomial distribution $\left(\overrightarrow{BD}\right)$ for 3 trials is

- 2.7, then the \overrightarrow{BD} is given by
 - A. $(0.2 + 0.8)^5$
 - $B.(0.3+0.7)^5$
 - ${\sf C}.\left(0.4+0.6
 ight)^{5}$

D. None of these

Answer: B

D Watch Video Solution

38.

$$\begin{split} P(x) &= \int \frac{dx}{e^x + 8e^{-x} + 4e^{-3x}}, Q(x) = \int \frac{dx}{e^{3x} + 8e^x + 4e^{-x}} \text{ and } R(x) = \\ \text{. If } R(x) &= \frac{1}{2} A\left(\frac{B + 2e^{-x}}{C}\right) + K \text{, then the value of (A, B, C) is} \\ \text{A. } \left(\tan^{-1}, 2, e^x\right) \\ \text{B. } \left(\tan^{-1}, e^x, 2\right) \\ \text{C. } \left(\tan^{-1}, \frac{1}{2}, \frac{1}{e^x}\right) \\ \text{D. } \left(\tan^{-1}, \frac{1}{e^x}, \frac{1}{2}\right) \end{split}$$

Answer: B

Natch Video Solution

39.
$$\int_0^1 \cot^{-1} (1-x+x^2) dx$$

A. log 2

B.
$$\frac{\pi}{2} - \log 2$$

C. $\frac{\pi}{2} + \log 2$
D. $-\log 2$

Answer: B

Watch Video Solution

40. The area of the region included between the curves
$$x^2 + y^2 = a^2$$
 and $\sqrt{|x|} + \sqrt{|y|} = \sqrt{a}(a > 0)$ is
A. $\left(\pi - \frac{2}{3}\right)a^2$ sq units
B. $\left(\frac{2}{3} - \pi\right)a^2$ sq units
C. $\frac{2}{3}\pi a^2$ sq units
D. $\left(\pi + \frac{2}{3}\right)a^2$ sq units

Answer: A

41. AandB are two independent events. The probability that both AandB occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of the occurrence of A.

A. 0 or 1

B.
$$\frac{1}{2}$$
 or $\frac{1}{3}$
C. $\frac{1}{2}$ or $\frac{1}{4}$
D. $\frac{1}{3}$ or $\frac{1}{4}$

Answer: B

Watch Video Solution

42. In a test, an examinee either guesses or copies or knows the answer to a multiple choice question with four choices. The probability that he makes a guess is $\frac{1}{3}$ and the probability that he copies the answer is 1/6. The probability that his answer is correct, given that he copied it, is 1/8.

Find the probability that he knew the answer to the question, given that be correctly answered it.

A. $\frac{27}{29}$ B. $\frac{26}{29}$ C. $\frac{25}{29}$ D. $\frac{24}{29}$

Answer: D

> Watch Video Solution

43. If p: 4 is an even prime number, q: 6 is a divisor of 12 and r: the HCF of

4 and 6 is 2, then which of the following is correct ?

A. $(p \wedge q)$

B. $(p \lor q) \land extsf{-}r$

C. ~ $(q \wedge r) \lor p$

D. ~ $p \lor (q \land r)$

Answer: D

44. The maximum value of Z = 4x + 2y subject to the constraints $2x + 3y \le 18, x + y \ge 10, x, y \ge 0$ is

A. 20

B. 36

C. 40

D. None of these

Answer: D

45. The coordinates of the point at which minimum value of Z=7x-8y subject to constraints $x+y-20\leq 0, y\geq 5, x\geq 0, y\geq 0$ is attained is A. (20,0)

B. (15,5)

C. (0,5)

D. (0,20)

Answer: D