

MATHS

BOOKS - BITSAT GUIDE

THE CIRCLE

Practice Exercise

1. The points (5,11), (11,19), (18,-4) lie on a circle, centre of the circle is at

A.(3,4)

B.(4,3)

C.(4,3)

D. None of these

Answer: D

View Text Solution

- 2. If the base of a triangle and the ratio of the lengths of the other two unequal sides are given, then the vertex lies on
 - A. . straight line
 - B. circle
 - C. ellipse
 - D. parabola

Answer: B

Watch Video Solution

3. The equation of circle concentric with circle $x^2+y^2-6x+12y+15=0$ and double its area is

A.
$$x^2 + y^2 - 6x + 12y - 15 = 0$$

$$B. x^2 + y^2 - 6x - 12y + 15 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 6x + 12y + 15 = 0$$

D. None of these

Answer: A

Watch Video Solution

4. A circle of radius 5 units touches both the axes and lies in the first quadrant. If the circle makes one complete roll on x-

axis along the positive direction of x-axis, then its equation in the new position is

A.
$$x^2 + y^2 + 20\pi x - 10y + 100\pi^2 = 0$$

B.
$$x^2 + y^2 + 20\pi x + 10y + 100\pi^2 = 0$$

C.
$$x^2 + y^2 - 20\pi x - 10y + 100\pi^2 = 0$$

D. None of the above

Answer: D

5. The values of λ for which the circle $x^2+y^2+6x+5+\lambda \big(x^2+y^2-8x+7\big)=0$ dwindles into a point are

A.
$$1\pm\frac{\sqrt{2}}{3}$$

B.
$$2\pm \frac{2\sqrt{2}}{3}$$

C.
$$2\pm \frac{4\sqrt{2}}{3}$$

D. $1\pm \frac{4\sqrt{2}}{3}$

Answer: C

6. The equation of the circle which passes through the points
$$(2,3)$$
 and $(4,5)$ and the centre lies on the straight line

$$y - 4x + 3 = 0$$
, is

A.
$$x^2 + y^2 - 4x - 10y + 25 = 0$$

$$\mathsf{B.}\,x^2 + y^2 - 4x - 10y - 25 = 0$$

C.
$$x^2 + y^2 - 4x + 10y - 25 = 0$$

D. None of the above

Answer: A

Watch Video Solution

7. The equation of circle which passes through the point (2,0) and whose centre is the limit of the point of intersection of the lines 3x+5y=1 and $(2+x)x+5c^2y=1asc\to 1$, is

A.
$$25(x^2+y^2)-20x+2y+60=0$$

$$\mathsf{B.}\,25\big(x^2+y^2\big)-20x+2y-60=0$$

$$\mathsf{C.}\,25(x^2-y^2)-20x-2y-60=0$$

D. None of the above

Answer: B

View Text Solution

8. Consider a family of circles which are passing through the point (1,1) and are tangent to X-axis. If (h,k) are the coordinates of the centre of the circles, then the set of values of k is given by the interval

A.
$$0 < k < rac{1}{2}$$

$$\mathtt{B.}\,k\geq\frac{1}{2}$$

$$\mathsf{C.} - \frac{1}{2} \leq k \leq \frac{1}{2}$$

D.
$$k \leq \frac{1}{2}$$

Answer: B

$$x = 7 + 4\cos\alpha$$
 and $y = -3 + 4\sin\alpha$ is

A.
$$x^2 + y^2 - 14x + 6y + 42 = 0$$

$$\mathtt{B.}\,x^2+y^2-6x+14y+21=0$$

$$\mathsf{C.}\,x^2+y^2-10x+12y+28=0$$

D. None of the above

Answer: A

Watch Video Solution

10. Two conics
$$a_1x^2+2h_1xy+b_1y^2=c_1,\,a_2x^2+2h_2xy+b_2y^2=c_2$$

intersect in 4 concyclic points. Then

A.
$$(a_1-b_1)h_2=(a_2-b_2)h_1$$

B.
$$(a_1-b_1)h_1=(a_2-b_2)h_2$$

C.
$$(a_1+b_1)h_2=(a_2+b_2)h_1$$

D.
$$(a_1+b_1)h_1=(a_2+b_2)h_2$$

Answer: A

Watch Video Solution

(3,0), also passes through the point

11. The circle passing through (1,-2) and touching the X-axis at

A.
$$(-5, 2)$$

B.
$$(2, -5)$$

$$C. (5, -2)$$

D.
$$(-2, 5)$$

Answer: C

View Text Solution

12. A circle touches the hypotenuse of a right angle triangle at its middle point and passes through the mid-point of the shorter side. If a and b (a < b) are the length of the sides, then the radius is

A.
$$\frac{b}{a}\sqrt{a^2+b^2}$$

B.
$$\frac{b}{2a}\sqrt{a^2-b^2}$$

C.
$$\frac{b}{4a}\sqrt{a^2+b^2}$$

D. None of these

Answer: C

View Text Solution

13. If the lines 3 4 7 0 x y - - = and 2x -3y -5=0 are two diameters of a circle of area 49 π sq units, then equation of the circle is

A.
$$x^2 + y^2 + 2x - 2y - 62 = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 2x + 2y - 62 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 2x + 2y - 47 = 0$$

D.
$$x^2 + y^2 + 2x - 2y - 47 = 0$$

Answer: C

View Text Solution

14. The equation of the locus of a point such that the sum of its distances from (0, 2) and (0,-2) is 6, is given by

A.
$$\frac{x^2}{5} + \frac{y^2}{9} = 1$$

B.
$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

C.
$$\frac{x^2}{5} - \frac{y^2}{9} = 1$$

D. None of these

Answer: A

View Text Solution

15. If the circle $x^2+y^2-4x-4y-1=0$ has two points P and Q on it which are farthest and nearest respectively from

the point (6,5),then

A.
$$P = -\left(-\frac{22}{5},3\right)$$
B. $Q = -\left(\frac{22}{5},\frac{19}{5}\right)$
C. $P = -\left(\frac{14}{3},-\frac{11}{5}\right)$
D. $Q = -\left(-\frac{14}{3},-4\right)$

Answer: B

16. Equation of the circle with centre on the Y-axis and passing through the origin and the point (2, 3), is

A.
$$x^2 + y^2 + 13y = 0$$

$$B. 3x^2 + 3y^2 + 13x + 3 = 0$$

$$\mathsf{C.}\,6x^2 + 6y^2 - 26y = 0$$

D.
$$x^2 + y^2 + 13x + 3 = 0$$

Answer: C

View Text Solution

17. Find the equation of a circle which touches both the axes and the line $3.4.8.0 \times y - + =$ and lies in the third quadrant.

A.
$$x^2 + y^2 + 4x + 4y - 4 = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 4x - 4y + 4 = 0$$

C.
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

D. None of the above

Answer: C

18. If a circle has centre (3,-1) and cut-off an intercept of length 6 from the line 2x-5y+18=0. Then, the equation of the circle is

A.
$$x^2 + y^2 - 6x + 2y + 28 = 0$$

$$\mathrm{B.}\,x^2 + y^2 + 6x + 2y - 28 = 0$$

$$\mathsf{C.}\,x^2 + y^2 - 6x - 2y + 28 = 0$$

D.
$$x^2 + y^2 - 6x + 2y - 28 = 0$$

Answer: D

View Text Solution

19. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a, is

A.
$$x^2 + y^2 = 9a^2$$

B.
$$x^2 + y^2 = 16a^2$$

C.
$$x^2 + y^2 = 4a^2$$

D.
$$x^2 + y^2 = a^2$$

Answer: C

View Text Solution

- **20.** The centre of a circle passing through the points (0, 0), (1,
- 0) and touching the circle $x^2+y^2=9$, is

A.
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$
B. $\left(\frac{1}{2}, \frac{3}{2}\right)$

C.
$$\left(rac{1}{2},rac{1}{2}
ight)$$
D. $\left(rac{1}{2},\ -2^{1/2}
ight)$

Answer: D

to the circles $x^2+y^2=a^2, x^2+y^2=b^2$ and $x^2+y^2=c^2$ are in AP ,then

21. If the squares of the length of the tangents from a point P

A. a ,b,c are in AP

B. a,b,c, are in GP

C. a^2 , b^2 , c^2 are in AP

D. a^2 , b^2 , c^2 are in GP

Answer: C

View Text Solution

- **22.** If the lines 3x 4y + 4 = 0 and 6x 8y 7 = 0 are tangents to a circle ,then find the radius of the circle .
 - A. $\frac{3}{4}$
 - $\mathsf{B.}\;\frac{4}{3}$
 - c. $\frac{1}{4}$
 - $\mathsf{D.}\ \frac{7}{4}$

Answer: A

23. What is the length of an equilateral triangle inscribed in the circle $x^2+y^2=rac{4}{3}$?

A. 2 units

B. 5 units

C. 3 units

D. 7 units

Answer: A

Watch Video Solution

24. The circle $x^2+y^2=5$ has a tangent at the point $(1,\;-2)$ tangent touches the .lf this circle

 $x^2+y^2-8x+6y+20=0$ also .Then ,its point of contact

A.
$$(3, -1)$$

is

B.
$$(-3,0)$$

C.
$$(-1, -1)$$

D.
$$(-2, 1)$$

Answer: A

View Text Solution

The point of contact

of

$$4x + 5y + 6 = 0$$
 and $x^2 + y^2 - 2x - 4y - 8 = 0$ is

$$A.\left(\frac{2}{3},\frac{2}{5}\right)$$

$$\mathsf{B.}\left(\frac{2}{5},\,\frac{5}{4}\right)$$

C.
$$(3, -2)$$

D. None of these

Answer: B

View Text Solution

Let A be the centre of the circle 26. $x^2+y^2-2x-4y-20=0$.If the tangents at the points B(1,7) and D(4,-2) on the circle meet at C, then find the area of the quadrilateral ABCD .

- A. 78
- B. 75
- C. 79
- D. 85

Answer: B

27. The triangle PQR is inscribed in the circle $x^2+y^2=25$. If Q and R have co-ordinates(3,4) and(-4, 3) respectively, then $\angle QPR$ is equal to

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D. $\frac{\pi}{6}$

Answer: C

Watch Video Solution

28. If the circles
$$(x-a)^2+(y-b)^2=c^2$$
 $(x-b)^2+(y-a)^2=c^2$ touch each other, then

and

A.
$$a=b\pm 2c$$

B.
$$a=b\pm\sqrt{2}c$$

C.
$$b \pm c$$

D. None of these

Answer: C

Watch Video Solution

- 29. How many tangents can be drawn from the poin (3,-2) to the circle $x^2 + y^2 - 8x - 6y + 9 = 0$?
 - A. 2
 - B. 1

C. 0

D. None of these

Answer: A

Watch Video Solution

30. If the line 3x-4y-k=0 (k>0) touches the circle $x^2+y^2-4x-8y-5=0$ at (a, b) then k+a+b is equal to :-

A. 20

B. 22

 $\mathsf{C.} - 30$

D. - 28

Answer: A

Watch Video Solution

31. The locus of the poin ,the chord of contact of tangents from which to the circle $x^2+y^2=a^2$ subtends a right angle at the centre , is a circle of radius

- A. 2a
- B. $\frac{a}{2}$
- $\mathsf{C}.\,\sqrt{2}a$
- D. a^2

Answer: C

View Text Solution

32. The locus of the mid -point of the chords of a circle

 $x^2+y^2=4$,which subtends a right angle at the centre , is

A.
$$x + y = 2$$

B.
$$x^2 + y^2 = 1$$

$$\mathsf{C.}\,x^2+y^2=2$$

D.
$$x - y = 0$$

Answer: C

33. If two distinct chords drawn from the point (p,q) on the circle $x^2+y^2=px+qy$ (where pq
eq 0) are bisected by X -

A.
$$p^2=q^2$$

axis,then

$$\mathsf{B.}\,p^2=8q^2$$

C.
$$p^2 < 8q^2$$

D. $p^2>8q^2$

as a diameter, is

Answer: D

View Text Solution

of the circles , $x^2+y^2-12x+2y-10=0 ext{ and } x^2+y^2-8x+5y-37=0$

34. The equation of the circle described on the common chord

A. $25(x^2+y^2)-348x+14y-74=0$

B. $25ig(x^2+y^2ig) - 348x + 140y - 74 = 0$

C. $25(x^2+y^2)-300x+14y+70=0$

D. None of the above

Answer: A

View Text Solution

35. AB is a chord of the circle $x^2+y^2=25$. The tangents of A and B intersect at C. If (2, 3) is the mid-point of AB, then area of the quadrilateral OACB is

A.
$$50\sqrt{\frac{13}{3}}$$

A.
$$50\sqrt{\frac{13}{3}}$$
B. $50\sqrt{\frac{3}{13}}$

$$\mathsf{C.}\ 50\sqrt{3}$$

D.
$$\frac{50}{\sqrt{3}}$$

Answer: B

36. The equation of the smallest circle passing through the intersection of line x+y =2 and the circle $x^2+y^2=16$ is

A.
$$x^2 + y^2 - 2x - 2y - 12 = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 2x + 2y - 12 = 0$$

$$\mathsf{C.}\,x^2+y^2+2x+2y+12=0$$

D.
$$x^2 + y^2 + 2x - 2y - 12 = 0$$

Answer: A

View Text Solution

37.

If

the

intersect in two distact points P and Q. Then ,the line 5x+by -a

circles

 $x^{2} + y^{2} + 2ax + cy + a = 0$ and $x^{2} + y^{2} - 3ax + dy - 1 = 0$

=0 passes through P and Q for

A. exactly two values of a

B. infinitely many values of a

C. no value of a

D. exactly one value of a

Answer: C

View Text Solution

38. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line

3x - 4y = m at two distinct points if

A.
$$-85 < m < -35$$

B.
$$-35 < m < 15$$

$${\sf C.}\,15 < m < 65$$

$${\rm D.\,35} < m < 85$$

Answer: B

Watch Video Solution

39. If P and Q are the points of intersection of the circles

$$x^2 + y^2 + 3x + 7y + 2p - 5 = 0$$

and

 $x^2+y^2+2x+2y+p^2=0$, then there is a circle passing through P and Q and (1, 1) for

A. all values of p

B. all except one value of p

C. all except two values of p

D. exactly one value of p

Answer: C

40. The circles $x^2+y^2-10x+16=0$ and $x^2+y^2=r^2$ intersect each other in two distinct points if

A. r < 2

B.
$$r > 8$$

D.
$$2 < r < 8$$

Answer: C

Watch Video Solution

41. If a circle passes through the poin (a,b) and cuts the circle $x^2+y^2=p^2$ orthogonally , then the equation of the locus of its centre is

A.
$$2ax + 2by - \left(a^2 + b^2 + p^2\right) = 0$$

B.
$$x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - p^2) = 0$$

C.
$$2ax + 2by - (a^2 + b^2 + 2b^2 + p^2) = 0$$

D. $x^2 + y^2 - 3ax - 4by + \left(a^2 + b^2 - p^2\right) = 0$

Answer: A

View Text Solution

42. If 2x - 4y = 9 and 6x - 12y + 7 = 0 are common tangents to a circle, then radius of the circle is

A.
$$\frac{\sqrt{3}}{5}$$

B.
$$\frac{17}{6\sqrt{5}}$$
 C.
$$\frac{\sqrt{2}}{3}$$

D. $\frac{17}{3\sqrt{5}}$

Answer: B

43. Let C be the circle with centre (1,1) and radius 1. If T is the circle centred at (0,y), passing through origin and touching the circle C externally, then the radius of T is equal to

- A. $\frac{1}{2}$ B. $\frac{1}{4}$
- C. $\frac{\sqrt{3}}{\sqrt{2}}$ D. $\frac{\sqrt{3}}{2}$

Answer: B

Watch Video Solution

$$x^2 + y^2 + 4x + 6y = 0$$
 and $x^2 + y^2 + 2gx + 2fy = 0$

touch each other ,then

- A. 3g ' = 2f'
- B. 3f' =2g '
- C. f' +g'=6
- D. f'-g'=1

Answer: A

View Text Solution

1. If the equation of circle which passes through the origin and cuts off intercepts 5 and 6 from the positive parts of the X-axis and Y-axis respectively, is $\left(x-\frac{5}{2}\right)^2+(y-3)^2=\lambda$,then λ equal is

A.
$$\frac{61}{4}$$

$$\mathsf{B.}\;\frac{4}{6}$$

$$\mathsf{C.}\ \frac{1}{4}$$

Answer: A

View Text Solution

2. Find the equation of the circle circumscribing the triangle

formed by the straight lines

x + y = 6, 2x + y = 4 and x + 2y = 5.

A.
$$x^2 + y^2 + 17x + 19y - 50 = 0$$

B.
$$x^2 + y^2 - 17x - 19y - 50 = 0$$

C.
$$x^2 + y^2 + 17x - 19y - 50 = 0$$

D.
$$x^2 + y^2 - 17x - 19y = 50 = 0$$

Answer: D

Watch Video Solution

3. The length of tangent from (5,1) to the circle $x^2+y^2+6x-4y-3=0$ is

B. 49

C. 63

D. 21

Answer: A

- 4. Find the angle between the two tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$

 - A. $\frac{\pi}{3}$ B. $\frac{\pi}{6}$ C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{8}$$

Answer: C

Watch Video Solution

5. If a circle passes through (0,0) and (a,0) and (0,b), then the coordinates of its centre are

A.
$$\left(\frac{b}{2}, \frac{a}{2}\right)$$

$$\mathsf{B.}\left(\frac{a}{2},\frac{b}{2}\right)$$

C. (b,a)

D. (a,b)

Answer: B

6. If the sum of the distance of a point P from two perpendicular lines in a plane, is 1, then the locus of P is a

A. rhombus

B. circle

C. straight line

D. pair of straight lines

Answer: A

View Text Solution

7. If the lines 2x - 3y = 5 and 3x - 4y = 7 are two diameters of a circle of radius 7 , then the equation of the

circle is

A.
$$x^2 + y^2 + 2x - 4y - 47 = 0$$

$$\mathtt{B.}\,x^2+y^2=49$$

$$\mathsf{C.}\,x^2 + y^2 - 2x + 2y - 47 = 0$$

D.
$$x^2+y^2=17$$

Answer: C

Watch Video Solution

8. Find the radius of the circle with the polar equation $r^2 - 8r ig(\sqrt{3}\cos heta + \sin heta + 15 = 0ig)$

A. 8

B. 7

C. 6

D. 5

Answer: B

9.

Watch Video Solution

 $x^2 - 2xy - 3x + 6y = 0$ is

The centre of circle whose normals

are

- $\mathsf{A.}\left(3,\frac{3}{2}\right)$
- $\mathsf{B.}\left(3,\;-\;\frac{3}{2}\right)$
- $\mathsf{C.}\left(rac{3}{2},3
 ight)$
- D. None of these

Answer: A

10. The centres of a set of circles, each of radius 3, lie on the circle x^2+y^2+25 . The locus of any point in the set is:

A.
$$4 \leq x^2 + y^2 \leq 64$$

B.
$$x^2+y^2\leq 25$$

C.
$$x^2+y^2\geq 25$$

D.
$$3 \leq x^2 + y^2 \leq 9$$

Answer: A

 $x^2 + y^2 - 2x + 22y + 5 = 0$ and $x^2 + y^2 + 14x + 6y + k = 0$

circles

two

intersect orthogonally, k is equal to

A. 47

B. - 47

D. - 49

C. 49

Answer: A

Watch Video Solution

12. The radius of the ciclle $x^2+y^2+4x+6y+13=0$ is

A.
$$\sqrt{26}$$

B. $\sqrt{13}$

C. $\sqrt{23}$

D. 0

Answer: D

- **13.** The centre of the circles $x=2+3\cos\theta, y=3\sin\theta-1$ is
 - A. (3, 3)
 - B.(2,1)
 - C. (-2, 1)
 - D. (-2, 1)

Answer: B

Watch Video Solution

14. The equation to the circle with centre (2,1) and touching the line 3x+4y=5 is

A.
$$x^2 + y^2 - 4x - 2y + 5 = 0$$

B.
$$x^2 + y^2 - 4x - 2y - 5 = 0$$

C.
$$x^2 + y^2 - 4x - 2y + 4 = 0$$

D.
$$x^2 + y^2 - 4x - 2y - 4 = 0$$

Answer: C

15. The condition for a line y = 2x + c to touch the circle

$$x^2+y^2=16$$
 is

A. c=10

B. $c^2 = 80$

c. c = 12

D. $c^2 = 64$

Answer: B

Watch Video Solution

16. Let $P(x_1,y_1)$ and $Q(x_2,y_2)$ be two points such that their abscissae x_1 and x_2 are the roots of the equation $x^2+2x-3=0$ while the ordinates y_1 and y_2 are the roots

of the equation $y^2+4y-12=0$.Then , the centre of the circle with PQ as diameter is

A.
$$(-1, -2)$$

B.
$$(1, 2)$$

C.
$$(1, -2)$$

D.
$$(-1, 2)$$

Answer: A

 $x^2+y^2+2x+8y-23=0$ and

17. The number of common tangents to the circles

$$x^2 + y^2 - 4x - 10y + 9 = 0$$
 are

- **A.** 1
- B. 3
- C. 2
- D. None of these

Answer: C

- **18.** If $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ touches the circle $x^2 + y^2 = a^2$ then point
- $\left(\frac{1}{\alpha}, \frac{1}{\beta}\right)$ lies on (a) straight line (b) circle (c) parabola (d)
- ellipse
 - A. . straight line
 - B. circle

C. parabola

D. ellipse

Answer: B

