

MATHS

BOOKS - BITSAT GUIDE

THREE DIMENSIONAL GEOMETRY

Practice Exercise

1. The xy-plane divides the line joining the points

(-1, 3, 4) and (2, -5, 6).

A. internally in the ratio 2:3

B. externally in the ratio 2:3

- C. internally in the ratio 3:2
- D. externally in the ratio 3:2

Answer: B

- 2. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with x-axis and y-axis respectively then the angle made by the line with z-axis, is
 - A. $\frac{\pi}{2}$
 - B. $\frac{\pi}{3}$
 - C. $\frac{\pi}{4}$

D.
$$\frac{5\pi}{12}$$

Answer: B

Watch Video Solution

3. If A (3, 2, 0), B (5, 3, 2) and C (-9, 6, -3) are three points forming a triangle and AD is bisector of \angle BAC, then AD meets BC at the point

A.
$$\left(19, 8, \frac{57}{16}, \frac{17}{16}\right)$$

$$B.\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$$

$$\mathsf{C.}\left(\frac{19}{8}, \frac{57}{16}, 17, 16\right)$$

D. none of these

View Text Solution

4. In ΔABC the mid points of the sides AB, BC and CA are (l,0,0),(0,m,0) and (0,0,n) respectively. Then,

$$rac{AB^2+BC^2+CA^2}{l^2+m^2+n^2}$$
 is equal to

A. 2

B. 4

C. 8

D. 16

Answer: C

5. If P(x,y,z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projection of \overrightarrow{OP} on the axes are $\frac{13}{5},\frac{19}{5},\frac{26}{5}$ respectively, then P divides QR in the ratio:

- A. 1:2
- B.3:2
- C. 2:3
- D. 1:3

Answer: B

6. The projections of a directed line segment on the coordinate axes are 12,4,3. The direction cosines of the line are

A.
$$\frac{12}{13}$$
, $-\frac{4}{13}$, $\frac{3}{13}$

$$\mathrm{B.}-\frac{12}{13},\;-\frac{4}{13},\,\frac{3}{13}$$

c.
$$\frac{12}{13}$$
, $\frac{4}{13}$, $\frac{3}{13}$

D. none of these

Answer: C

7.

the

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$

line

intersect, then k is equal to

A.
$$\frac{9}{2}$$

B. 10

C. 1

D.
$$\frac{12}{11}$$

Answer: A

8. The foot of perpendicular from (0,2,3) to the line

$$rac{x+3}{5}=rac{y-1}{2}=rac{z+4}{3}$$
 is

A.
$$(-2, 3, 4)$$

B.
$$(2, -1, 3)$$

C.
$$(2, 3, -1)$$

D.
$$(3, 2, -1)$$

Answer: C

View Text Solution

9. Perpenficular distance of the point (1, 2, 3) from

the line $\dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$ is

- A. 7
- B. 5
- C. 8
- D. 0

Watch Video Solution

10. Find the length of the perpendicular drawn from point (2,3,4) to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- A. $\frac{3}{7}\sqrt{101}$
- $\mathsf{B.}\ \frac{2}{7}\sqrt{101}$

$$\mathsf{C.}\ \frac{2}{7}\sqrt{103}$$

D.
$$\frac{3}{7}\sqrt{103}$$

Watch Video Solution

11. Find the angle between the lines
$$x-2$$
 $y+1$ $x-1$ $2y+3$ $z+$

A.
$$\pi/2$$

B. $\pi/3$

C. $\pi/6$

D. none of these

$$rac{x-2}{3}=rac{y+1}{-2}=z=2andrac{x-1}{1}=rac{2y+3}{3}=rac{z+5}{2}$$

Watch Video Solution

12. The angle between the diagonal of a cube and an edge of the cube intersecting the diagonal, is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B.
$$\cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

C.
$$\tan^{-1}(\sqrt{2})$$

D. none of these

Answer: C

13. The angle between the lines whose direction cosines are given by l+m+n=0 and $l^2+m^2-n^2=0$ is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{2}$

Answer: C

14. The angle between the lines whose direction cosines

(l,m,n) satisfy the equations l+m+n=0 and 2lm+2ln-1

mn = 0, is

- A. 60°
- B. 90°
- C. 110°
- D. 120°

Answer: D

15. Find the shortest distance between the lines

$$rac{x+1}{7}=rac{y+1}{-6}=rac{z+1}{1}$$
and $rac{x-3}{1}=rac{y-5}{-2}=rac{z-7}{1}$

- A. $\sqrt{29}$ units
- B. 29 units
- C. $\frac{29}{2}$ units
- D. $2\sqrt{29}$ units

Answer: D

16. If a plane meets the coordinate axes in A, B, C and (α,β,γ) is the centroid of \triangle ABC. Then, the equation of the plane is

A.
$$\frac{x}{3lpha}+rac{y}{3eta}+rac{z}{3\gamma}=1$$

B.
$$\dfrac{3x}{lpha}+\dfrac{3y}{eta}+\dfrac{3z}{\gamma}=1$$

C.
$$\alpha x + \beta y + \gamma z = 1$$

D. none of these

Answer: A

17. If the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1$ cuts the coordinates axes at points A,B and C. Then, find the area of \triangle ABC.

- A. $\sqrt{18}$ sq units
- B. 30 sq units
- C. $3\sqrt{14}$ sq units
- D. $13\sqrt{14}$ sq units

Answer: C

Watch Video Solution

18. Prove that the distance of the points of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane

x-y+z=5 from the point $(\,-1,\,-5.\,-10)$ is 13.

A. 10

B. 11

C. 12

D. 13

Answer: D

Watch Video Solution

which bisects the line joining the points (1, 2, 3) and

19. The intercepts made on the axes by the plane the

$$\left(rac{9}{2},9,9
ight)$$
 c. $\left(9,\,-rac{9}{2},9
ight)$ d. $\left(9,rac{9}{2},9,
ight)$

(-3,4,5) at right angles are a. $\left(-\frac{9}{2},9,9\right)$ b.

C.
$$\left(19,\ -\frac{9}{2},9\right)$$

B. $\left(\frac{9}{2}, -9, 9\right)$

Answer: A

20. A line with positive direction cosines passes through the point P (2, - 1,2) and makes equal angles with the

coordinate axes. The line meet the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals

- A. $\sqrt{5}$
- B. $3\sqrt{2}$
- C. $\sqrt{3}$
- D. $\sqrt{7}$

Answer: C

View Text Solution

21. The projection of the line $\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}$ on the plane x-2y+z=6 is the line of intersection of

this plane with the plane a. 2x + y + 2 = 0 b.

3x+y-z=2 c. 2x-3y+8z=3 d. none of these

A.
$$2x + y + 2 = 0$$

$$\mathsf{B.}\,3x+y+z=20$$

C.
$$2x + 3y + 8z = 13$$

D.
$$6x - y - 2z = 12$$

Answer: A

Watch Video Solution

22. The equation of the plane containing the line

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 and the point (0,7, - 7), is

A.
$$x + y + z = 1$$

B.
$$x + y + z = 2$$

C.
$$x + y + z = 0$$

D. none of these

Answer: C

View Text Solution

23. The equation of the plane through (3,1,-3) and (1,-2,2) are parallel to the line with direction ratios 1,1,-2 is

A.
$$x - y + z + 1 = 0$$

B.
$$x + y - z + 1 = 0$$

C.
$$x - y - z - 1 = 0$$

D.
$$x + y + z - 1 = 0$$

Answer: D

Watch Video Solution

2 = 0 passing through the point (1,1,1), is

24. The equation of the plane through the line of intersection of the planes x + y + z - 1 = 0 and 2x + y - 3z + 1 = 0

A.
$$x-4z+3=0$$

B.
$$x - y + z = 1$$

C.
$$x + y + z = 3$$

D.
$$2x - y + z = 2$$

View Text Solution

25. Find the coordinates of the point where the line through (3, -4, -5) and (2-3,1) crosses the plane passing through the points (2,2,1),(3,0,1) and (4,-1,0).

A. (1, 2, 7)

B. (-1, 2, -7)

C. (1, -2, 7)

D. none of these

Answer: C

26. The plane passing through the point (-2, - 2, 2) and containing the line joining the points (1, -1,2) and (1,1,1) makes intercepts on the coordinate axes and the sum of whose length is

- A. 3
- B. 6
- C. 12
- D. 20

Answer: C

View Text Solution

27. The equation of the plane passing through (2,1,5) and parallel to the plane 3x-4y+5z=4 is

A.
$$3x - 4y + 5z - 27 = 0$$

$$B. \, 3x - 4y + 5z + 21 = 0$$

C.
$$3x - 4y + 5z + 26 = 0$$

D.
$$3x - 4y + 5z + 17 = 0$$

Answer: A

28. The equation of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y - z = 0, is

A.
$$\frac{x-3}{-2} = \frac{y-0}{1} = \frac{z-1}{(3)}$$

B.
$$\frac{x-3}{1} = \frac{y-0}{-2} = \frac{z-1}{3}$$

C.
$$\frac{x-3}{3} = \frac{y-0}{1} = \frac{z-1}{-2}$$

D. none of these

Answer: A

29. The equation of the plane which contains two

parallel lines
$$\dfrac{x+_1}{3}=\dfrac{y-2}{2}=\dfrac{z}{1}$$
 and $\dfrac{x-3}{3}=\dfrac{y+4}{2}=\dfrac{z-1}{1}$ is

A.
$$3x + 2y + z = 10$$

B.
$$8x + y - 26z + 6 = 0$$

C.
$$4x + 6y + z = 50$$

D. none of these

Answer: B

If

the

planes

x-cy-bz=0, cx=y+az=0 and bx+ay-z=0 pass through a straight line, then find the value of

 $a^2 + b^2 + c^2 + 2abc$

- A. 2
- B. 3
- C. 0
- D. 1

Answer: D

31. The equation of plane through the intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y - z + 5 = 0 and perpendicular to the plane 5x + 3y + 6z = 8, is

A.
$$51x + 15y - 50z - 173 = 0$$

$$\mathsf{B.}\,51x - 15y + 50z + 173 = 0$$

$$\mathsf{C.}\,51x + 15y - 50z + 173 = 0$$

$$\mathsf{D.}\,51x - 15y - 50z - 173 = 0$$

Answer: C

32.

The equation

of

line

а

4x - 4y - z + 11 = 0 = x + 2y - z - 1 can be put as

$$\frac{x}{2} = \frac{y-2}{1} = \frac{z-3}{4}$$
 (b) $\frac{x-2}{2} = \frac{y-2}{1} = \frac{z}{4}$

 $\frac{2}{x-2} = \frac{y}{1} = \frac{z-3}{4}$ (d) None of these

A.
$$\frac{x}{2} = \frac{y-2}{1} = \frac{z-3}{4}$$

B.
$$\frac{x-4}{2} = \frac{y-4}{1} = \frac{z-11}{5}$$

C.
$$\frac{x-2}{-2} = \frac{y}{3} = \frac{z+3}{5}$$

D.
$$\frac{x+2}{3} = \frac{y+2}{4} = \frac{z-1}{4}$$

Answer: A

33. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$. Then, (α,β) equals

A.
$$(6, -17)$$

B.
$$(-6, 7)$$

C.
$$(5, -15)$$

D.
$$(-5, 15)$$

Answer: B

Watch Video Solution

34. The distance of the plane x+2y-z=2 from the point $(2,\,-1,\,3)$, measured in the direction with the

direction ratios (2, 2,1) is

A. 2

B.-3

 $\mathsf{C.}-2$

D. 3

Answer: D

Watch Video Solution

35. A plane is such that the foot of perpendicular drawn from the origin to it is (2, - 1,1). The distance of (1,2,3) from the plane, is

A.
$$3/2$$

B.
$$\sqrt{3/2}$$

C. 2

D. 0

Answer: B

View Text Solution

36. Find the distance of the point(1, 0, -3) from the plane

x-y-z=9 measured parallel to the line,

$$\frac{x-2}{2} = \frac{y+2}{3} = \frac{z-6}{-6}.$$

A. 6

- B. 7
- C. 17
- D. 26

Answer: B

Watch Video Solution

37. Find the equation of the plane through the intersection of the planes x+3y+6=0 and 3x-y-4z=0, whose perpendicular distance from the origin is unity.

A.
$$x + y - 2z + 3 = 0$$
, $x - 2y - 2z - 3 = 0$

B.
$$2x + y - 2z + 3 = 0, x - 2y - 2z - 3 = 0$$

C.
$$x - y + 2z + 3 = 0$$
, $x + 2y + 2z + 3 = 0$

D.
$$2x - y + 2z - 3 = 0$$
, $x + 2y + 2z + 3 = 0$

Answer: B

$$rac{x+1}{3}=rac{y+2}{1}=rac{z+1}{2}$$
 and $rac{x-2}{1}=rac{y+2}{2}=rac{z-3}{3}$ The distance of the point (1,

A.
$$\frac{12}{\sqrt{75}}$$

B.
$$\frac{17}{\sqrt{7!}}$$

C.
$$\frac{10}{\sqrt{75}}$$

D. $\frac{20}{\sqrt{75}}$

Answer: C

View Text Solution

39. A plane passes through the point (1,-2,3) and is parallel to the plane 2x-2y+z=0. The distance of the point (-1,2,0) from the plane, is

A. 2

B. 3

C. 4

D. 5

Answer: D

Watch Video Solution

40. Distance between two parallel planes

$$2x + y + 2z = 8$$
 and $4x + 2y + 4z + 5 = 0$ is

$$\mathsf{A.}\;\frac{3}{2}$$

$$\mathsf{B.}\;\frac{5}{2}$$

$$\mathsf{C.}\,\frac{7}{2}$$

D.
$$\frac{9}{2}$$

Answer: C

Watch Video Solution

41. If the lines
$$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$$
 and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, then k can have

A. any value

B. exactly one value

C. exactly two values

D. 'exactly three values

Answer: C

42. Find the coordinates of the foot of the perpendicular

drawn from the origin to the plane

$$2x \qquad 3y \quad + \quad 4z \qquad 6 \quad = \quad 0 \, .$$

A.
$$\left(\frac{12}{29}, -\frac{18}{29}, \frac{24}{29}\right)$$

B.
$$\left(\frac{13}{19}, -\frac{18}{29}, \frac{24}{29}\right)$$

$$\mathsf{C.}\left(-rac{12}{29},rac{18}{29},rac{24}{29}
ight)$$

D.
$$\left(\frac{12}{19}, -\frac{18}{29}, -\frac{24}{29}\right)$$

Answer: A

43. Find the image of the point (1,3,4) in the plane

$$2x - y + z + 3 = 0.$$

A.
$$(3, 5, -2)$$

B.
$$(-3, 5, 2)$$

C.
$$(3, -5, 2)$$

D.
$$(3, 5, 2)$$

Answer: B

Watch Video Solution

44. Find the image of the point (1,6,3) in the line

$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$

A.
$$(-1, 0, 7)$$

B.
$$(-1, 0, -7)$$

$$\mathsf{C}.\ (1,\,0,\,7)$$

D.
$$(2, 0, 7)$$

Answer: C

45. The image of the line
$$\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$$
 in the plane $2x-y+z+3=0$ is the line (1)

$$\frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5} \tag{2}$$

$$\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5} \tag{3}$$

A.
$$rac{x-3}{-3} = rac{y+5}{-1} = rac{z-2}{5}$$
B. $rac{x+3}{3} = rac{y-5}{1} = rac{z-2}{-5}$

(3)

c.
$$\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$$

D. $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$

 $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$

 $\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$

Answer: B

Watch Video Solution

46. The volume of the tetrahedron formed by coordinate planes and 2x + 3y + z = 6, is

Answer: C

D. 0

View Text Solution

Bitsat Archives

Two line whose are
$$\frac{y-2}{3}=\frac{z-1}{\lambda}$$
 and $\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-3}{2}$

$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}$$
 and $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$

lie in the same plane, then,

Q. The value of $\sin^{-1}\sin\lambda$ is equal to

A. 3

B. $\pi-3$

C. 4

D. $\pi-4$

Answer: D

Watch Video Solution

2. If the plane x+y+z=1 is rotated through 90° about its line of intersection with the plane x-2y+3z=0, the new position of the plane is

A.
$$x - 45y + 4z = 1$$

B.
$$x - 5y + 4z = -1$$

C.
$$x - 8y + 7z = 2$$

D.
$$x - 8y + 7z = -2$$

Answer: D

Watch Video Solution

3. The distance of the point (1, - 5,9) from the plane x + y + z = 5 measured along a straight line x = y = z is $2\sqrt{3k}$

A. 5

then the value of k is

- B. 6
- C. $\sqrt{3}$
- D. 4

Answer: A

View Text Solution

4. The angle between the lines whose directionn cosines are given by 2l-m+2n=0, lm+mn+nl=0 is

- A. $\frac{\pi}{6}$
- $\operatorname{B.}\frac{\pi}{4}$
- C. $\frac{7}{3}$

D.
$$\frac{\pi}{2}$$

Answer: D

Watch Video Solution

5. Let L be the line of intersection of the planes 2x+3y+z=1 and x+3y+2z=2. If L makes an angle α with the positive X=axis, then $\cos\alpha$ equals

A. 1/2

B. 1

 $\mathsf{C.}\,1/\sqrt{2}$

D. $1/\sqrt{3}$

Answer: D

Watch Video Solution

6. A plane passes through the point (1,-2,3) and is parallel to the plane 2x-2y+z=0. The distance of the point (-1,2,0) from the plane, is

A. 2

B. 3

C. 4

D. 5

Answer: D

7. The line
$$\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$$
 intersects the curve $xy=c^2, z=0,$ if c is equal to

A.
$$\pm 1$$

$$B.\pm 1/3$$

$$\mathrm{C.}\pm\sqrt{5}$$

D. none

Answer: C

8. The direction ratios of the line x-y+z-5=0=x-3y-6` are

A. 3, 1,
$$-2$$

B. 2,
$$-4, 1$$

$$\mathsf{C.}\,\frac{3}{\sqrt{14}},\,\frac{1}{\sqrt{14}}\frac{-2}{\sqrt{14}}$$

D.
$$\frac{2}{\sqrt{41}}, \frac{-4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$$

Answer: A

Watch Video Solution

9. The intercepts of the plane 2x-3y+4z=12 on the coordinate axes are given by

A.
$$3, -2, 1.5$$

B.
$$6, -4, 3$$

C.
$$6, -4, -3$$

D.
$$2, -3, 4$$

Answer: B

$$rac{x-1}{3} = rac{y+2}{4} = rac{z-3}{-2}$$
 and the plane

$$2x - y + 3z - 1 = 0$$
, is

A.
$$(10, -10, 3)$$

B. (10, 10, 13)

 $\mathsf{C.} (-10, 10, 3)$

D. none of these

Answer: B

Watch Video Solution

- 11. The equation of plane passing through a point A(2, -1,
- 3) and parallel to the vectors a = (3, 0, -1) and b = (-3, 2, 2)

is

A.
$$2x - 3y + 6z - 25 = 0$$

B.
$$2x - 3y + 6z + 25 = 0$$

C.
$$6x - 2y + 6z - 25 = 0$$

$${\rm D.}\, 3x - 2y + 6z + 25 = 0$$

Answer: A

