

MATHS

BOOKS - BITSAT GUIDE

VECTOR ALGEBRA

Practice Exercise

1. If
$$|\alpha + \beta| = |\alpha - \beta|$$
 , then

A. α is parallel to β

B. lpha is perpendicular to eta

$$\mathsf{C}.\,|\alpha|=|\beta|$$

D. None of the above

Answer: B

Watch Video Solution

2. If \widehat{a} and \widehat{b} are two unit vectors and θ is the angle between them, then $\widehat{a}+\widehat{b}$ is a unit vector, if

A.
$$heta=rac{\pi}{3}$$

B.
$$heta=rac{\pi}{4}$$

$$\operatorname{C.}\theta = \frac{\pi}{2}$$

D.
$$heta=rac{2\pi}{3}$$

Answer: D

3. Find a unit vector \overrightarrow{c} if $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between vectors \overrightarrow{c} and $3\hat{i}+4\hat{j}$.

A.
$$rac{1}{15}\Big(11\hat{i}+10\hat{i}+2\hat{k}\Big)$$

$$\mathsf{B.} - \frac{1}{15} \Big(11 \hat{i} - 10 \hat{i} + 2 \hat{k} \Big)$$

C.
$$-rac{1}{15}\Big(11\hat{i}-10\hat{i}-2\hat{k}\Big)$$

D.
$$-rac{1}{15}\Big(11\hat{i}+10\hat{i}+2\hat{k}\Big)$$

Answer: D

Watch Video Solution

4. In a trapezium ABCD the vector $\overrightarrow{BC}=\lambda\overrightarrow{AD}$. If $\overrightarrow{p}=\overrightarrow{AC}+\overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p}=\mu\overrightarrow{AD}$, then

A.
$$\mu=\lambda+1$$

B.
$$\lambda = \mu + 1$$

$$\mathsf{C}.\,\lambda + \mu = 1$$

D.
$$\mu=2+\lambda$$

Answer: A

Watch Video Solution

5. Let a, b and c be three non-zero vectors, no two of which are collinear and the vector a + b is collinear with c while b + c is collinear with a, then a + b + c is equal to

A. a

B.b

C. c

D. None

Answer: D

6. A vector a has components 2p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter-clockwise sense. If with respect to new system, a has components p+1 and 1, then

$$\mathsf{A.}\,p=0$$

B.
$$p = 1 \text{ or } p = -1/3$$

C.
$$p = -1$$
 or $p = 1/3$

D.
$$p = 1 \text{ or } p = -1$$

Answer: B

7. If the sum of two unit vectors is a unit vector, then find the magnitude of their differences.

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. $\sqrt{5}$
- D. $\sqrt{7}$

Answer: B

Watch Video Solution

8. If the position vectors off A,B,C and D are

 $2\hat{i}+\hat{j},\,\hat{i}-3\hat{j},3\hat{i}+2\hat{j}\, ext{ and }\,\hat{i}+\lambda\hat{j}$, respectively and $AB\mid\;\mid CD$,

then λ will be

A.-7

$$\mathsf{C.}-6$$

Answer: C

Watch Video Solution

9. If \widehat{a} and \widehat{b} are unit vectors inclined at an angle $lpha,\,lpha,\,\in[0,\pi]$ to each other and $\left|\widehat{a}+\widehat{b}\right|<1$ Then ,

A.
$$\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$$

B.
$$\left(\frac{2\pi}{3},\pi\right)$$

C.
$$\left(0, \frac{\pi}{3}\right)$$

D.
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

Answer: B

10. Let a,b and c be three non-zero vectors which are pairwise non-collinear. If a+3b is collinear with c and b+2c is collinear with a, then a+3b+6c is

A.a+c

B. a

C. c

D. 0

Answer: D

11. If the vectors $\overrightarrow{AB}=3\hat{i}+4\hat{k}$ and $\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is (A) $\sqrt{33}$ (B) $\sqrt{45}$ (C) $\sqrt{18}$ (D) $\sqrt{720}$

- A. $\sqrt{18}$
- B. $\sqrt{72}$
- C. $\sqrt{33}$
- D. $\sqrt{45}$

Answer: C

Watch Video Solution

12. If a and b are non-collinear vectors, then the value of a for which the vectors u=(a-2)a+b and V=(2+3a)a-3b are collinear, is

A.
$$\frac{3}{2}$$

B.
$$\frac{2}{3}$$

$$\mathsf{C.}\,\frac{-3}{2}$$

D.
$$\frac{-2}{3}$$

Answer: B

13. If
$$|a|=|b|=|c|=1$$
 and $a\cdot b=b\cdot c=c$. $a=\cos heta$, then the maximum value of $heta$ is

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.}\;\frac{\pi}{2}$$

$$\mathsf{C.} \; \frac{2\pi}{3}$$

D.
$$\frac{2\pi}{5}$$

Answer: C

Watch Video Solution

14. If the resolved parts of the force vector $5\hat{i}+4\hat{j}+2\hat{k}$ along and perpendicular to the vector $3\hat{i}+4\hat{k}-5\hat{k}$ are α and β respectively. Then, the value of α is

A.
$$rac{21}{50} \Big(3\hat{i} + 4\hat{i} - 5\hat{k} \Big)$$

B.
$$rac{21}{50}ig(3\hat{i}-4\hat{i}+5\hat{k}ig)$$

C.
$$rac{11}{50}ig(2\hat{i}-4\hat{i}+3\hat{k}ig)$$

D.
$$rac{1}{50}\Big(187\hat{i}+116\hat{i}-205\hat{k}\Big)$$

Answer: A

View Text Solution

15. let $|a|=2\sqrt{2},$ |b|=3 and the angle between a and b is $\frac{\pi}{4}$. If a parallelogram is constructed with adjacent sides 2a-3b and a+b, then its longer digonal is of length

B. 8
$${\sf C.}\ 2\sqrt{26}$$

$${\sf D.}\ 6$$

A. 10

Answer: C

16. Let
$$\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k},$$
 $\overrightarrow{b}=\hat{i}+2\hat{j}-\hat{k}$ and $\overrightarrow{c}=\hat{i}+\hat{j}-2\hat{k}$ be three vectors. A vector in the plane of \overrightarrow{b} and \overrightarrow{c} whose projection on \overrightarrow{a} is of magnitude $\sqrt{2/3}$ is
$$A.\ 2\hat{i}+3\hat{j}-3\hat{k}$$

B.
$$2\hat{i}+3\hat{j}+3\hat{k}$$

C.
$$-2\hat{i}-\hat{j}+5\hat{k}$$

D.
$$2\hat{i}+\hat{j}+5\hat{k}$$

Answer: A

Watch Video Solution

17. The vector a, b, c are equal in length and taken pairwise they mak equal-angles.

If $a=i+j,\,b=j+k$ and c makes obtuse angle with x-axis, then c =

A.
$$-\hat{i}+4\hat{j}-\hat{k}$$

B.
$$\hat{i}+\hat{k}$$

C.
$$rac{1}{3}ig(-\hat{i}+4\hat{j}-\hat{k}ig)$$

D.
$$rac{\hat{i}-4\hat{j}+\hat{k}}{3}$$

Answer: C

Watch Video Solution

18. If a and b are two non-collinear vectors such that

$$|a|=3, |b|=4$$
 and $a-b=\hat{i}+2\hat{j}+3\hat{k}$, then the value of $\int |a-b| \, igr l^2$

$$\left\{rac{|a-b|}{|a||b|}
ight\}^2$$

A.
$$\frac{1}{24}$$

B.
$$\frac{5}{72}$$

D.
$$\frac{7}{48}$$

c. $\frac{7}{72}$

Answer: C

19. If the points P (a+b - c), Q(2a+ 3b) and R (b + c) are collinear, where a, b, c are three coplanar vectors, then the value of t is

- A.-2
- B. -1/2
- C.1/2
- D. 2

Answer: D

View Text Solution

20. If the three vectors a, b and c with magnitude 3, 4 and 5 respectively and a+b+c=0, then the value of a.b+b. c+c a is

$$\mathsf{B.}-25$$

C. 30

D. 26

Answer: B

21.

Watch Video Solution

A.
$$\cos^{-1} \frac{3}{11}$$

B.
$$\cos^{-1} \frac{2}{11}$$

D.
$$\cos^{-1} \frac{3}{22}$$

Answer: C

 $a=2\hat{i}+2\hat{j}-\hat{k}$ and $b=6\hat{i}-3\hat{j}+2\hat{k}$ is

the vectors

The angle between

C. $\cos^{-1} \frac{4}{21}$

22. If
$$a=\hat{i}+2\hat{k}+3\hat{k},$$
 $b=-\hat{i}+2\hat{j}=\hat{k}$ and $c=3\hat{i}+\hat{j}$, then p such that $a+pb$ is at right angle to c will be

B. 9

C. 3

D. 5

Answer: D

Watch Video Solution

Three

 $a=\hat{i}+\hat{j}-\hat{k}, b=-\hat{i}+2\hat{j}+\hat{k}$ and $c=-\hat{i}+2\hat{j}-\hat{k}$, then

vectors

the unit vector perpendicular to both a+b and b+c is

A.
$$\frac{\hat{i}}{\sqrt{3}}$$

B. \hat{k}

C.
$$\dfrac{\hat{k}}{\sqrt{3}}$$
 D. $\dfrac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: B

is

24. The vector \overrightarrow{c} , directed along the internal bisector of the angle

 $\overrightarrow{c} = 7\hat{i} - 4\hat{j} - 4\hat{k} \, ext{ and } \, \overrightarrow{b} = \, -2\hat{i} - \hat{j} + 2\hat{k} \, ext{ with } \, \left|\overrightarrow{c}\right| = 5\sqrt{6},$

A.
$$rac{2}{3}ig(\hat{i}-7\hat{j}+2\hat{k}ig)$$

B.
$$rac{5}{3}ig(\hat{i}-7\hat{j}+2\hat{k}ig)$$

C.
$$rac{7}{3}\Big(\hat{i}-7\hat{j}+\hat{k}\Big)$$

D.
$$rac{2}{3}\Big(\hat{i}+7\hat{j}-2\hat{k}\Big)$$

Answer: B

Watch Video Solution

25. A vector \overrightarrow{r} is equally inclined with the vectors

 $\overrightarrow{a}=\cos heta \hat{i}+\sin heta \hat{j}, \ \overrightarrow{b}=-\sin heta \hat{i}+\cos heta \hat{j}$ and $\overrightarrow{c}=\hat{k}$, then

the angle between
$$\overrightarrow{r}$$
 and \overrightarrow{a} is

A.
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{3}\right)$$

D.
$$\frac{\pi}{2}$$

Answer: B

Watch Video Solution

26. Vectors a and b are such that |a|=1, |b|=4 and $a.\ b=2.$ If c=2a imes b-3b, then the angle between b and c is

- A. $\frac{\pi}{6}$
- B. $\frac{5\pi}{6}$
- C. $\frac{\pi}{3}$
- D. $\frac{2\pi}{3}$

Answer: B

Answer: A

28.

D.
$$-z\hat{i}+x\hat{k}$$

B. 0

C. $y\hat{i}$

A. $z\hat{i} - x\hat{k}$

Watch Video Solution

If

 $\overrightarrow{a}=\hat{i}-\hat{j}+2\hat{k},$ $\overrightarrow{b}=2\hat{i}+4\hat{j}+\hat{k}$ and $\overrightarrow{c}=\lambda\hat{i}+\hat{j}+\mu\hat{k}$ are mutually orthogonal $then(\lambda,\mu)=$ (A) (-2,3) (B) (3,-2) (C) (-3,2) (D) (2,-3)

the

vectors

27. if the vectors \overrightarrow{c} , $\overrightarrow{a}=x\hat{i}+y\hat{j}+z\hat{k}$ and $\overrightarrow{b}=\hat{j}$ are such that

 \overrightarrow{a} , \overrightarrow{c} and \overrightarrow{b} from a right -handed system, then find \overrightarrow{c} .

A.
$$(-3, 2)$$

B.
$$(2, -3)$$

$$C.(-2,3)$$

D.
$$(3, -2)$$

Answer: A

Watch Video Solution

29. The non-zero vectors a, b and c are related by a=8b and c=-7b. Then the angle between a and c is :

- A. π
- B. 0
- $\mathsf{C.}\;\frac{\pi}{4}$
- D. $\frac{\pi}{2}$

Answer: A

then the angle btween $\widehat{a} \; ext{and} \; \widehat{b}$ is

30. Let \widehat{a} and \widehat{b} two unit vectors. If the vectors $c=\widehat{a}+2\widehat{b}$ and $d=5\widehat{a}-4\widehat{b}$ are perpendicular to each other ,

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{4}$$

Answer: C

31. Let $\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k},$ $\overrightarrow{b}=\hat{i}+2\hat{j}-\hat{k}$ and $\overrightarrow{c}=\hat{i}+\hat{j}-2\hat{k}$ be three vectors. A vector in the plane of \overrightarrow{b} and \overrightarrow{c} whose projection on \overrightarrow{a} is of magnitude $\sqrt{2/3}$ is

A.
$$2\hat{i}+\hat{j}+5\hat{k}$$

B.
$$2\hat{i} + 3\hat{j} - 3\hat{k}$$

C.
$$2\hat{i}-\hat{j}+5\hat{k}$$

D.
$$2\hat{i}+3\hat{j}+3\hat{k}$$

Answer: B

Watch Video Solution

32. The vector $\Big(\hat{i} imes a.\ b\Big)\hat{i}+\Big(\hat{j} imes a.\ b\Big)\hat{j}+\Big(\hat{k} imes a.\ b\Big)\hat{k}$ is equal to

A.
$$b \times a$$

C.
$$a imes b$$

Answer: C

View Text Solution

33. If $\widehat{a},\,\widehat{b}\,$ and $\,\widehat{c}\,$ are unit vectors satsfying $\,\widehat{a}-\sqrt{3}\widehat{b}+\widehat{c}=0\,$ then the angle between the vectors $\,\widehat{a}\,$ and $\,\widehat{c}\,$ is

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\mathsf{C.}\;\frac{\pi}{6}$$

D.
$$\frac{\pi}{2}$$

Answer: B

34. If a vector r of magnitude $3\sqrt{6}$ is directed along the bisector of the angle between the vectors $a=7\hat{i}-4\hat{j}-4\hat{k}$ and $b=-2\hat{i}-\hat{j}+2\hat{k}$, then r is equal to

A.
$$\hat{i}\,-7\hat{j}+2\hat{k}$$

B.
$$\hat{i} + 7\hat{j} - 2\hat{k}$$

C.
$$\hat{i} + 7\hat{j} + 2\hat{k}$$

D.
$$\hat{i}-7\hat{j}-2\hat{k}$$

Answer: A

View Text Solution

35. The are three vectors $a=\hat{i}+\hat{j}, b=\hat{j}+\hat{k}$ and $\hat{c}=x\widehat{a}+y\widehat{b}$.

If the vectors $\hat{i}-2\hat{j}+\hat{k},$ $3\hat{i}+2\hat{j}-\hat{k}$ and c are coplanar, then $\frac{x}{y}$ is equal to

- A.-2
- B.-3
- c. $\frac{2}{3}$
- D. -1

Answer: B

Watch Video Solution

36. Let $\vec{b}=4\hat{i}+3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along \vec{b} and \vec{c} respectively.

A.
$$\hat{i}+2\hat{j}$$

В.
$$2\hat{i} - \hat{j}$$

C.
$$2\hat{i}+\hat{j}$$

D. None

Answer: B

Watch Video Solution

 $L(1,0,3),\,M(\,-1,3,4),\,N(1,2,1)\,$ and $\,P(\lambda,2,5)$ are coplanar is

the

points

The value of λ for which

37.

$$\mathsf{B.}-2$$

D.
$$-1$$

Answer: D

Watch Video Solution

38. If $\widehat{a}=2\widehat{i}+\widehat{j}-\widehat{k}$ and $b=\widehat{i}+\widehat{k}$, then the vector c such that a.c = 4 and $a\times c=b$ is

A.
$$\hat{i}+\hat{j}-\hat{k}$$

B.
$$3\hat{i}-\hat{j}+\hat{k}$$

C.
$$\hat{i}+3\hat{j}+\hat{k}$$

D.
$$2\hat{i}+\hat{j}-\hat{k}$$

Answer: A

View Text Solution

39. Let $a=2\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+2\hat{j}-\hat{k}$ and a unit vector \overrightarrow{c} be coplanar. If \overrightarrow{c} is perpendicular to a, then \overrightarrow{c} is equal to

A.
$$\Big(-\hat{j}+\hat{k}\Big)$$

B.
$$\pm \frac{1}{\sqrt{2}} \Big(-\hat{j} + \hat{k} \Big)$$

$$\mathsf{C.}\pm\frac{1}{\sqrt{2}}\Big(\hat{j}+\hat{k}\Big)$$

D. None of these

Answer: B

View Text Solution

40. If
$$\overrightarrow{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right)$$
, $\overrightarrow{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} - 6\hat{k} \right)$, then the value of $\left(2\overrightarrow{a} - \overrightarrow{b} \right)$. $\left\{ \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \right\}$ is

$$A. - 3$$

$$\mathsf{D.}-5$$

Answer: D

Watch Video Solution

41. If
$$a=\hat{j}-\hat{k}$$
 and $c=\hat{i}-\hat{j}-\hat{k}$, Then , the vector b satisfying $a imes b+c=0$ and $a.\,b=3$ is

A.
$$-\hat{i}+\hat{j}-2\hat{k}$$

B.
$$2\hat{i}-\hat{j}+2\hat{k}$$

C.
$$\hat{i}-\hat{j}-2\hat{k}$$

D.
$$\hat{i}+\hat{j}-2\hat{k}$$

Answer: A

42. Two vectors a and b are not perpendicular and c and d are two vectors satisfying b imes c = b imes d and $a.\ d = 0$ Then vector d is equal to

A.
$$c + \Big(rac{a.\ c}{a.\ b}\Big)b$$

$$\mathtt{B.}\,b + \bigg(\frac{b.\,c}{a.\,b}\bigg)c$$

$$\mathsf{C.}\,c - \Big(rac{a.\,c}{a.\,b}\Big)b$$

D.
$$b - \left(rac{b.\ c}{a.\ b}
ight) b$$

Answer: C

43. If the vectors $p\hat{i}+\hat{j}+\hat{k},\,\hat{i}+q\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r\hat{k}(p\neq q\neq r\neq 1)$ are coplanar, then the value of pqr-(p+q+r) is :

$$A.-2$$

B. 2

C. 0

D. -1

Answer: A

Watch Video Solution

44. If u, v and w are three non-coplanar vectors, then (u+v-w). (u-v) imes (v-w) is equal to

A. 0

B.
$$u.\ v \times w$$

$$\mathsf{C}.\,u.\,w imes v$$

D.
$$3u.\ v \times w$$

Answer: B

View Text Solution

45. Let \overrightarrow{b} and \overrightarrow{c} be non-collinear vectors. If \overrightarrow{a} is a vector such that

$$\overrightarrow{a}$$
 . $\left(\overrightarrow{b}+\overrightarrow{c}
ight)=4$

$$\overrightarrow{a} imes \left(\overrightarrow{b} imes \overrightarrow{c}
ight) = \left(x^2-2x+6
ight)\overrightarrow{b} + \sin y. \ \overrightarrow{c}$$
 , then (x,y) lies on

and

the line:

A.
$$x + y = 0$$

B.
$$x - y = 0$$

$$C. x = 1$$

D.
$$y=\pi$$

Answer: C

Watch Video Solution

46. Let \overrightarrow{a} and \overrightarrow{b} be two non-collinear unit vectors. If $\overrightarrow{u} = \overrightarrow{a} - \left(\overrightarrow{a}.\overrightarrow{b}\right)\overrightarrow{b}$ and $\overrightarrow{v} = \overrightarrow{a} \times \overrightarrow{b}$, then $|\overrightarrow{v}|$ is

B.
$$|u| + |v. \widehat{a}|$$

$$\mathsf{C.}\,2|v|$$

D.
$$|u|+u.\left(\widehat{a}+\widehat{b}
ight)$$

Answer: A

47. The value of [(a-b),(b-c) imes(c-a)] is

A. 0

 $\mathtt{B.}\,2[a,b,c]$

 $\mathsf{C}.\left[a,b,c
ight]$

D. None

Answer: A

Watch Video Solution

48. A vector c of magnitude $20\sqrt{6}$ directed along the bisector of the angle between $a=7\hat{i}-4\hat{j}-4\hat{k}$ and $b=2\hat{i}-\hat{j}+2\hat{k}$, is

A.
$$\pmrac{5}{3}\Big(2\hat{i}+7\hat{j}+\hat{k}\Big)$$

$$\mathsf{B.} \pm \frac{3}{5} \Big(\hat{i} + 7 \hat{j} + 2 \hat{k} \Big)$$

 $a imes r = \hat{j}$ then a.r is

C. $\pm rac{5}{3} \Big(\hat{i} - 2 \hat{j} + 7 \hat{k} \Big)$

D. $\pm rac{5}{3} \Big(\hat{i} - 7 \hat{j} + 2 \hat{k} \Big)$

View Text Solution

49. If \hat{i},\hat{j},\hat{k} are the unit vectors and a is a vector such that

Answer: D

D. None

A. -1

B, O

50. If a makes an acute angle with b and r imes b = c imes b, then r is equal to

A.
$$a imes \hat{i} - b$$

$$c. c - \frac{c. a}{b. a}. b$$

D.
$$c + \frac{c. a}{b. a}b$$

Answer: C

View Text Solution

The vectors (a,a+1,a+2)(a+3,a+4,a+5)(a+6,a+7,a+8) are coplanar for

A.
$$orall a \in R$$

B. $\forall a \not \in R$

$$\mathsf{C.}\,a=\,-\,\sqrt{-\,3}$$

D. None of these

Answer: A

52.

Watch Video Solution

If

$a = \lambda \hat{i} + 2\hat{j} - 3\hat{k}, b = 2\hat{i} + \lambda \hat{j} - \hat{k}, c = \hat{i} + 2\hat{j} + \hat{k} \text{ and } [abc] = 6$, then λ is equal to

$$A. - 8$$
 or 3

B.-9 or 3

$$\mathsf{C.} - 3 \, \mathsf{or} + \mathsf{9}$$

D. 8 or 5

Answer: A

Watch Video Solution

53. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then the scalar triple

$$\mathsf{product}\left[2\overrightarrow{a} - \overrightarrow{b}\,2\overrightarrow{b} - \overrightarrow{c}\,2\overrightarrow{c} - \overrightarrow{a}\right] \mathsf{is}\, 0\, \mathsf{b}.\, 1\, \mathsf{c}.\, -\sqrt{3}\, \mathsf{d}.\, \sqrt{3}$$

A. 2

B.-3

C. 0

D. None

Answer: C

54. If a is perpedicular to b and c|a|=2, |b|=3|c|=4 and the angle between b and c is $\frac{2\pi}{3}$, then [a,b,c] is equal to

- A. $7\sqrt{3}$
- B. $9\sqrt{3}$
- C. $12\sqrt{3}$
- D. $5\sqrt{3}$

Answer: C

55. If $\overrightarrow{a} \ \overrightarrow{b}$ are non zero and non collinear vectors, then

$$\left[egin{array}{ccc}
ightarrow &
ightarrow &
ightarrow & i \end{array}
ight] \hat{i} + \left[egin{array}{ccc}
ightarrow &
ightarrow & j \end{array}
ight] \hat{j} + \left[egin{array}{ccc}
ightarrow &
ightarrow & k \end{array}
ight] \hat{k}$$
 is equal to

- A. a+b
- B. a imes b

$$\mathsf{C}.\,a-b$$

D. b imes a

Answer: B

Watch Video Solution

56. The vectors $a=2\hat{i}+\hat{j}-2\hat{k}, b=\hat{i}+\hat{j}$. If c is a vector such that $a.\ c=|c|$ and $|c-a|=2\sqrt{2},$ angle between $a\times b$ and c is

 45° , then |(a imes b) imes c| is

A.
$$\frac{1}{2}$$

 $\overline{2}$

B. $\frac{3\sqrt{3}}{2}$

C. 3

D. $\frac{3}{2}$

Answer: D

57. The vectors $a=2\hat{i}+\hat{j}-2\hat{k}, b=\hat{i}+\hat{j}.$ If c is a vector such that $a.\ c=|c|$ and $|c-a|=2\sqrt{2},$ angle between $a\times b$ and c is 45° , then $|(a\times b)\times c|$ is

B.
$$\frac{\sqrt{3}}{2}$$
 C. $\frac{3\sqrt{2}}{2}$

D.
$$\frac{2\sqrt{2}}{3}$$

Answer: C

If

, then the value of lpha+eta is

the

the three

vectors

 $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+\hat{j} ext{ and } c=\hat{i} ext{ and } (a imes b) imes c=lpha a+eta b$

- A. 2
- B. 3
- C. 0

D. None

Answer: C

View Text Solution

Bitsat Archives

1. The unit vector perpendicular to the vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{j}$ forming a right handed system, is

A.
$$\hat{k}$$

B.
$$-\hat{k}$$

C.
$$\frac{\hat{i}-\hat{j}}{\sqrt{2}}$$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

D.
$$\frac{i+j}{\sqrt{2}}$$

Answer: A

Watch Video Solution

2. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be non-zero vectors such that no two are collinear and

$$\left(\overrightarrow{a} imes\overrightarrow{b}
ight) imes\overrightarrow{c}=rac{1}{3}\Big|\overrightarrow{b}\Big|\Big|\overrightarrow{c}\Big|\overrightarrow{a}$$

If θ is the acute angle between the vectors \overrightarrow{b} and \overrightarrow{c} then $\sin\theta$ equals

A.
$$\frac{2\sqrt{2}}{3}$$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$

D.
$$\frac{1}{3}$$

Answer: A

3. If |a|=2, |b|=5 and |a imes b|=8, then [a.b] is equal to

A. 3

B. 4

C. 5

Answer: D

Watch Video Solution

- **4.** The work done by the force $4\hat{i}-3\hat{j}+2\hat{k}$ in moving a particle along a straight line from the point (3, 2, 1) to (2-1,4) is
 - A. O units
 - B. 4 units
 - C. 15 units
 - D. 19 units

Answer: C

- **5.** If a. $(b \times c) = 0$, then the correct statement is
 - A. out of a, b, c, any two vectors are parallel
 - B. a, b, c are coplanar
 - C. any two are equal among a,b,c
 - D. atleast one statement is correct

Answer: B

- **6.** If $2\hat{i}+\hat{j}-\hat{k}$ & $\hat{i}-4\hat{j}+\lambda\hat{k}$ are perpendicular to each other, then λ is equal to
 - A.-3
 - B.-2

C. -1

D. 0

Answer: B

Watch Video Solution

7. If $a.\ \hat{i}=4$ then $\left(a imes\hat{j}
ight).\left(2\hat{j}-3\hat{k}
ight)$ is equal to

A. 12

B. 2

C. 0

D. - 12

Answer: D

8. The vector r is equal to

A.
$$\left(a.\ \hat{i}
ight)\hat{i} + \left(a.\ \hat{j}
ight)\hat{j} + \left(a.\ \hat{k}
ight)\hat{k}$$

B.
$$\left(a.\ \hat{j}
ight)\hat{i} + \left(a.\ \hat{j}
ight)\hat{j} + \left(a.\ \hat{i}
ight)\hat{k}$$

C.
$$\left(a.\ \hat{k}
ight)\hat{i} + \left(a.\ \hat{i}
ight)\hat{j} + \left(a.\ \hat{j}
ight)\hat{k}$$

D.
$$(a.\ a) \Big(\hat{i} + \hat{j} + \hat{k}\Big)$$

Answer: A

Watch Video Solution

9. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the value of [a b c] is

A. 0

B. 1/2

Answer: A

10.

Watch Video Solution

a, b, c be three vectors such

that

- $a.\ (b+c)=b.\ (c+a)=c.\ (a+b)=0\ ext{and}\ |a|=1, |b|=4, |c|=8$
 - , then |a+b+c| equals
 - 8. 81

A. 13

B. 81

C. 9

D. 5

11. The position vectors of P and Q are respectively \overrightarrow{a} and \overrightarrow{b} . If R is a point on \overrightarrow{PQ} such that $\overrightarrow{PR}=5\overrightarrow{PQ}$, then the position vector of R, is

A.
$$5b-4a$$

$$\mathsf{B.}\,5b+4a$$

$$\mathsf{C.}\,4b-5a$$

$$\mathsf{D.}\,4b+5a$$

Answer: A

12. If the position vectors of A, B and C are respectively

$$2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k}\, ext{ and }\,3\hat{i}-4\hat{j}-4\hat{k}$$
 , then \cos^2 is equal to

A. 0

 $\mathsf{B.}\;\frac{6}{41}$

 $\mathsf{C.}\ \frac{35}{41}$

D. 1

Answer: C

View Text Solution

13. Let $\overrightarrow{V}=2\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{W}=\hat{i}+3\hat{k}$. If \overrightarrow{U} is a unit vector, then the maximum value of the scalar triple product $\overrightarrow{U}\overrightarrow{V}\overrightarrow{W}$ is

A. -1

B.
$$\sqrt{10}+\sqrt{6}$$

C.
$$\sqrt{10}-\sqrt{6}$$

D.
$$\sqrt{59}$$

Answer: D

Watch Video Solution

14. the vector which is orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with the vectors $2\hat{i}+\hat{j}+\hat{k}$ and $\,\hat{i}-\hat{j}+\hat{k}$ is

A.
$$rac{2\hat{i}\,-6\hat{j}+\hat{k}}{\sqrt{41}}$$

B.
$$\frac{2\hat{i}-3\hat{j}}{\sqrt{13}}$$

C.
$$\dfrac{3\hat{j}-\hat{k}}{\sqrt{10}}$$
 D. $\dfrac{4\hat{i}+3\hat{j}-3\hat{k}}{\sqrt{34}}$

Answer: C

15. Let a, b, c be three non-coplanar vectors and p, q, r be vectors

defined by the relations

$$p = rac{b imes c}{\left[egin{array}{ccc} a & b & c \end{array}
ight]}, q = rac{c imes a}{a & b & c}, r = rac{a imes b}{\left[egin{array}{ccc} a & b & c \end{array}
ight]}$$

Then , the value of the expression

$$(a+b) \times p + (b+c) \times q + (c+a). r$$
 is

B. 1

C. 2

D. 3

Answer: D

View Text Solution

16. If $\widehat{a},\,\widehat{b}$ and \widehat{c} are mutually perpendicular unit vectors then

$$\left|\widehat{a}+\widehat{b}+\widehat{c}
ight|$$
 is equal to

A. 3

B. $\sqrt{3}$

C.
$$\frac{\sqrt{a^2+b^2+c^2}}{3}$$

D. 1

Answer: B

17. The projection of the vector $2\hat{i}+\hat{j}-3\hat{k}$ on the vector $\hat{i}-2\hat{j}-\hat{k}$ is

$$-\frac{3}{\sqrt{14}}$$

A. $-\frac{3}{\sqrt{14}}$ B. $\frac{3}{\sqrt{14}}$

18. If
$$a=\hat{i}+2\hat{j}-3\hat{k}$$
 and $b=3\hat{i}-\hat{j}+2\hat{k}$ then the angle between the vectors $a+b$ and $a-b$ is

A.
$$60^{\circ}$$

в.
$$90^\circ$$

C.
$$45^{\circ}$$

D.
$$55^{\circ}$$

Watch Video Solution

Answer: B

If

the

vectors

$$lpha\hat{i}+\hat{j}+\hat{k},\,\hat{i}+eta\hat{j}+\hat{k}\, ext{ and }\,\hat{i}+\hat{j}+\gamma\hat{k}(lpha,eta,\gamma
eq1)$$
 coplanar, then the value of $rac{1}{1-lpha}+rac{1}{1-eta}+rac{1}{1-\gamma}$ is

are

A. -1

В. О

C. 1

 $\mathsf{D}.\,1/2$

Answer: C

- **20.** If a vector α lie in the plane of β and γ , then which is correct ?
 - A. $[lpha,eta,\gamma]$ =0

B.
$$[lpha,eta,\gamma]=1$$

C.
$$[lpha,eta,\gamma]=3$$

D.
$$[eta,\gamma,lpha]=1$$

Answer: A

Watch Video Solution

then
$$\left(\overrightarrow{lpha} imes\overrightarrow{eta}
ight)$$
. $\left(\overrightarrow{lpha} imes\overrightarrow{\gamma}
ight)$ is equal to

21. If $\overrightarrow{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k}, \overrightarrow{\gamma} = \hat{i} + \hat{j} + \hat{k},$

A. 47

B. 74

C. - 74

D. None of these

Answer: C

