©゙’doubtnut

PHYSICS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2012

Physics

1. A straight wire of mass 200 g and length 1.5
m carries a current of 2 A . It is suspended in
mid-air by a uniform horizontal magnetic field
B. The magnitude of B (in tesla) is (assume

$$
\left.g=9.8 m s^{-2}\right)
$$

A. 2
B. 1.5
C. 0.55
D. 0.65

Answer: D
(Watch Video Solution

2. In the circuit shown the value of I in ampere

is

A. 1
B. 0.60
C. 0.4
D. 1.5

Answer: C

D Watch Video Solution

3. When light of wavelength 300 nm falls on a photoelectric emitter, photoelectrons are liberated. For another emitter, light of wavelength 600 nm is sufficient for liberating photoelectrons. The ratio of the work function of the two emitters is
A. $1: 2$
B. 2:1
C. $4: 1$
D. 1: 4

Answer: B

D Watch Video Solution

4. A monatomic gas is suddenly compressed to $\left(\frac{1}{8}\right)$ th of its initial volume adiabatically. The ratio of its final pressure to the initial pressure
is (Given, the ratio of the specific heats of the

given gas to be 5/3)

A. 32
B. $40 / 3$
C. $24 / 5$
D. 8

Answer: A
(Watch Video Solution
5. the intensity of the magnetic induction field at the centre of a single turn circular coil of radius 5 cm carrying current of 0.9 A is

> A. $36 \pi \times 10^{-7} T$
> B. $9 \pi \times 10^{-7} T$
> C. $36 \pi \times 10^{-6} T$
> D. $9 \pi \times 10^{-6} T$

Answer: A

- Watch Video Solution

6. A capacitor of capacity $0.1 \mu F$ connected in
series to a resistor of $10 M \Omega$ is charged to a
certain potential and then made to discharge through resistor. The time in which the potential will take to fall to half its original
value is (Given, $\log _{10} 2=0.3010$)
A. $2 s$
B. $0.693 s$
C. 0.5 s
D. 1.0 s

Answer: B

- Watch Video Solution

7. If the force is given by $F=a t+b t^{2}$ with t is
time. The dimensions of a and b are
A. $\left[M L T^{-4}\right],\left[M L T^{-2}\right]$
B. $\left[M L T^{-3}\right],\left[M L T^{-4}\right]$
C. $\left[M L^{2} T^{-3}\right],\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T^{-3}\right],\left[M L^{3} T^{-4}\right]$

Answer: B

- Watch Video Solution

8. A ray of light is incident on the interface
between water and glass at an angle i and refracted parallel to the water surface, then
value of μ_{g} will be

Glass
A. $(4 / 3) \sin i$
B. $\frac{1}{\sin i}$
C. $\frac{4}{3}$
D. 1

Answer: B

D Watch Video Solution

9. A body is moved in straight line by constant power of machine. What will be the relation between the travelling distance and time?
A. $S^{2} \propto t^{3}$
B. $S^{2} \propto t$
C. $S^{3} \propto t^{2}$
D. $S \propto t^{3}$

Answer: A

D Watch Video Solution

10. Magnetic moment of bar magnet is M. The work done to turn the magnet by 90° of magnet in direction of magnetic field B will be
A. Zero
B. $\frac{1}{2} \mathrm{MB}$
C. 2 MB
D. $M B$

Answer: D

D Watch Video Solution

11. Voltage V and current I in AC circuit are given by $\mathrm{V}=50 \sin (50 \mathrm{t})$ volt, $\mathrm{l}=50 \sin \left(50 t+\frac{\pi}{3}\right.$
) mA

The power dissipated in the ciruit is
A. 5.0 W
B. 2.5 W
C. 1.25 W
D. zero

Answer: C
(Watch Video Solution
12. A simple wave motion represented by
$y=5(\sin 4 \pi t+\sqrt{3} \cos 4 \pi t)$. Its amplitude is
A. 5
B. $5 \sqrt{3}$
C. $10 \sqrt{3}$
D. 10

Answer: D
(Watch Video Solution
13. A large open tank has two holes in the wall.

One is a square hole of side L at a depth y
from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then, R is equal to
A. $\frac{L}{\sqrt{2} \pi}$
B. $2 \pi L$
c. $L \sqrt{\frac{2}{\pi}}$
D. $\frac{L}{2 \pi}$

Answer: A

D Watch Video Solution

14. In the circuit shown below, the ammeter reading is zero. Then, the value of the
resistance R is

A. 50Ω
B. 100Ω
C. 200Ω
D. 400Ω
15. The dimensional formula for inductance is
A. $\left[M L^{2} T^{-2} A^{-2}\right]$
B. $\left[M L^{2} T A^{-2}\right]$
C. $\left[M L^{2} T^{-1} A^{-2}\right]$
D. $\left[M L^{2} T^{-2} A^{-2}\right]$

Answer: A
16. The maximum current that can be measured by a galvanometer of resistance
40Ω is 10 mA . It is converted into a voltmeter
that can read upto 50 V . The resistance to be
connected in series with the galvanometer is ...
(in ohm)
A. 2010
B. 4050
C. 5040
D. 4960

Answer: D

D Watch Video Solution

17. For a given velocity, a projectile has the same range R for two angles of rpojection if
t_{1} and t_{2} are the times of flight in the two cases then
A. $t_{1} t_{2} \propto R$
B. $t_{1} t_{2} \propto R^{2}$
C. $t_{2} t_{2} \propto \frac{1}{R^{2}}$

D. $t_{1} t_{2} \propto \frac{1}{R}$

Answer: A

D Watch Video Solution

18. A sample of ideal monoatomic gas is taken
round the cycle $A B C A$ as shown in the figure.

The work done during the cycle is

A. 3 pV
B. zero
C. 9 pV
D. 6 pV

Answer: A

D Watch Video Solution
19. A sound source is moving towards stationary listener with $\frac{1}{20}$ th of the speed of sound. The ratio of apparent to real frequency is
A. $\left(\frac{9}{10}\right)^{2}$
B. $\frac{20}{19}$
C. $\frac{11}{10}$
D. $\left(\frac{11}{10}\right)^{2}$

Answer: B

D Watch Video Solution

20. A satellite is in a circular orbit round the earth at an altitude R above the earth's
surface, where R is the radius of the earth. If g is the acceleration due to gravity on the surface of the earth, the speed of the satellite is
A. $\sqrt{2 R g}$
B. $\sqrt{R g}$
C. $\sqrt{\frac{R g}{2}}$
D. $\frac{\sqrt{R g}}{4}$

Answer: C

D Watch Video Solution

21. A 10 kg stone is suspended with a rope of
breaking strength $30 \mathrm{~kg}-\mathrm{wt}$. The minimum time in which the stone can be raised through a
height 10 m starting from rest is (Take,

$$
\left.g=10 N k g^{-1}\right)
$$

A. 0.5 s
B. 1.0 s
C. $\sqrt{\frac{2}{3}} s$
D. 2.0 s

Answer: B
(Watch Video Solution
22. How much work must be done by a force
on 50 kg body in order to accelerate it from rest to $20 \mathrm{~m} / \mathrm{s}$ in 10 s ?
A. $10^{3} \mathrm{~J}$
B. $10^{4} \mathrm{~J}$
C. $2 \times 10^{3} \mathrm{~J}$
D. $5 \times 10^{4} J$

Answer: B

D Watch Video Solution
23. A and B are two metals with threshold frequencies $1.8 \times 10^{14} \mathrm{~Hz}$ and $2.2 \times 10^{14} \mathrm{~Hz}$.

Two identical photons of energy 0.825 eV each are incident on them. Then, photoelectrons are emitted by (Taking, $h=6.6 \times 10^{-34} J-s$)
A. B alone
B. A alone
C. Neither A nor B
D. Both A and B

Answer: B

- Watch Video Solution

24. The square of resultant of two equal forces

is three times their product. Angle between
the force is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

D Watch Video Solution

25. An object placed on the ground in the stable equilibrium. If the object is given a light push, then initially the position of centre of gravity
A. moves nearer to ground
B. rises higher above the ground
C. Remains as such

D. May remain at same level

Answer: B

D Watch Video Solution

26. The maximum height attained by a projectile when thrown at angle θ with the horizontal is found to be half the horizontal range. Then θ is equal to
A. $\tan ^{-1}(2)$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: A

D Watch Video Solution

27. A shell of mass 20 kg at rest explodes into two fragments whose masses are in the ratio
$2: 3$. The smaller fragment moves with a
velocity of $6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the

larger fragment is

A. 96 J
B. 216 J
C. 144 J
D. 360 J

Answer: A
(Watch Video Solution

28. If the displacement of simple pendulum at

 any time is 0.02 m and acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$,then in this time angular velocity will be
A. $100 \mathrm{rad} / \mathrm{s}$
B. $10 \mathrm{rad} / \mathrm{s}$
C. $1 \mathrm{rad} / \mathrm{s}$
D. $0.1 \mathrm{rad} / \mathrm{s}$

Answer: B

D Watch Video Solution
29. Which is constant, the earth revolving around the sun ?
A. Angular momentum
B. Linear momentum
C. Rotational kinetic energy
D. Kinetic energy

Answer: A

D Watch Video Solution
30. In non-elastic collision,
A. momentum is conserved
B. energy is conserved
C. momentum and energy are conserved
D. momentum and energy are non-
conserved

Answer: D

D Watch Video Solution

31. In the Young's double slit experiment, a mica slip of thickness t and refractive index μ is introduced in the ray from first source S_{1}. By how much distance fringes pattern will be displaced ? ($\mathrm{d}=$ distance between the slits and

D is the distance between slits and screen)

$$
\begin{aligned}
& \text { A. } \frac{d}{D}(\mu-1) t \\
& \text { B. } \frac{D}{d}(\mu-1) t \\
& \text { C. } \frac{d}{(\mu-1) D} \\
& \text { D. } \frac{D}{t}(\mu-1)
\end{aligned}
$$

Answer: B

- Watch Video Solution

32. The refractive index of water is $4 / 3$ and that of glass is $5 / 3$. What will be the critical angle for the ray of light entering water from the glass

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{5}{4}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

D. $\sin ^{-1}\left(\frac{2}{1}\right)$

Answer: A

D Watch Video Solution

33. The produced rays in sonography are
A. microwaves
B. infrared wave
C. sound waves
D. ultra sound

Answer: D

D Watch Video Solution

34. The ratio of secondary and primary turns
of step-up transformer is 4 : 1.If a current of 4A
is applied to the primary, the induced current in secondary will be
A. $8 A$
B. $2 A$
C. $1 A$

D. 0.5 A

Answer: C

D Watch Video Solution

35. The minimum force required to move a body up on an inclined plane is three times
the minimum force required to prevent it from
sliding down the plane.If the coefficient of friction between the body and the inclined
plane is $\frac{1}{2 \sqrt{3}}$ the angle of the inclined plane is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: C
(Watch Video Solution
36. If k_{s} and k_{p} respectively are effective spring constant in series and parallel combination of springs as shown in figure, find $\frac{k_{s}}{k_{p}}$.

A. $\frac{9}{2}$
B. $\frac{3}{7}$
C. $\frac{2}{9}$
D. $\frac{7}{3}$

Answer: C

D Watch Video Solution

37. The power dissipated across resistance R which is connected across a battery of potential V is P . If resistance is doubled, then the power becomes
A. $1 / 2$
B. 2
C. $1 / 4$
D. 1

Answer: A

- Watch Video Solution

38. A body moves with uniform acceleration, which of the following graph is correct?

Answer: C
39. The rate at which a black body emits
radiation at a temperature T is proportional to
A. $\frac{1}{T}$
B. T
C. T^{3}
D. T^{4}

Answer: D

D Watch Video Solution
40. Two equal charges q are kept fixed at
$-a$ and $+a$ along the x-axis. A particle of mass m and charge $\frac{q}{2}$ is brought to the origin and given a small displacement along the x axis, then
A. the particle executes oscillatory motion
B. the particle remains stationary
C. the particle executes SHM along x-axis
D. the particle executes SHM along y-axis

Watch Video Solution

