©゙’ doubtnut

PHYSICS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2013

Physics

1. A square shaped current loop of side length

L and carrying current I lies in a uniform
magnetic field B acting perpendicular to the
plane of squre loop and directed inward. The net magnetic force acting on current loop is
A. IBL
B. 4 IBL
C. zero
D. 2IBL

Answer: C

D Watch Video Solution
2. Two parallel conductors carry current in opposite direction as shown in figure. One conductor carries a current of 10.0 A. point C is a distance $\frac{d}{2}$ to the right of the 10.0 A current.

If the $\mathrm{d}=18 \mathrm{~cm}$ and I is adjusted so that the magnetic field at C is zero, the value of the
current I is

A. 10.0 A
B. 30.0 A
C. 8.0 A

D. 18.0 A

Answer: B

D Watch Video Solution

3. Two long, parallel conductors carry currents in the same direction, as shown in figure.

Conductors A held firmly in position.

Conductors B carries a current I_{B} and is allowed to slide freely up and down (parallel to A) between a se of non-conducting guides.
the mass per unit length of conductors B is 0.1 g / cm and the distance between the two conductors is 5 cm . if system of conductors is in equilibrium , the value of current I_{B} is

A. 250 A
B. 240 A
C. 220 A
D. 230 A

Answer: A

D Watch Video Solution

4. The number of photoelectrons in a photoelectric effect experiment depends on the
A. Frequency of light
B. Intensity of light
C. Both (frequency of light) and (intensity
of light) are correct
D. Both (frequency of light) and (intensity
of light) are incorrect

Answer: B

- Watch Video Solution

5. In hydrogen atom, if $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are shortest
wavelengths in Lyman, Balmer and Paschen
series respectively then $\lambda_{1}: \lambda_{2}: \lambda_{3}$ equals
A. $1: 4: 9$
B. 9:4:1
C. $1: 2: 3$
D. 3:2:1

Answer: A

- Watch Video Solution

6. Half-lives of elements A and B are $1 h$ and $2 h$

respectively. Which of the following is correct?

A. Element A decays slower
B. Decay constant of A is smaller
C. If initial number of nuclei are same then
activity of A is more

D. Mean life of A is more

Answer: C

7. A glass piece is dipped in a liquid of refractive index $\frac{4}{3}$ it gets disappeared in the liquid. The refractive index of the glass piece is?

> A. $\frac{3}{4}$
> B. $\frac{5}{3}$
> C. $\frac{4}{5}$
> D. $\frac{4}{3}$

- Watch Video Solution

If the bio-convex lens is cut as shown in the
figure, the new focal length f^{\prime} is
A. $2 f$
B. f
C. ${ }^{`}(\mathrm{f}) /(2)$

D. Infinite

Answer: A

D Watch Video Solution

9. Refractive index of a medium depends on

A. On the medium only
B. On the incident light only
C. On both the conditions given in options
(on the medium only) and (on the

incident light only)

D. None of the above

Answer: C

D Watch Video Solution

10. A point object is placed at the focus of a convex mirror the image will be formed at
A. Infinity
B. Centre of curvature

C. At focus itself

D. None of these

Answer: D

D Watch Video Solution

11.

A point object is placed at the focus of the bio-
conved lens. What should be the value of X, so the final image forms at infinity?
A. 10 cm
B. 20 cm
C. 15 cm
D. None of these

Answer: B
(Watch Video Solution
12. The image formed by a concave spherical mirror,
A. Is always virtual
B. Is always real
C. Is always inverted
D. May be erect

Answer: D

D Watch Video Solution
13. The total energy of a revolving satellite around the earth is $-K J$. The minimum energy required to throw it out of earth's gravitational fields is
A. $K J$
B. $\frac{K}{2} J$
C. 2KJ
D. None of these

Answer: A
14. There is a shell of mass M and density of shell is uniform. The work done to take a point mass from point A to B is $(A B=r)$

A. $\frac{G m M}{r}$
B. $\frac{G m M}{R}$
c. $-\frac{G m M}{r}$
D. zero

Answer: D

D Watch Video Solution

15. A body of mass $m=20 \mathrm{~g}$ is attached to an elastic spring of length $\mathrm{L}=50 \mathrm{~cm}$ and spring constant $\mathrm{k}=2 \mathrm{Nm}^{-1}$. The syste is revolved in a horizontal plan with a frequency $\mathrm{v}=30 \mathrm{rev} / \mathrm{min}$.

Find the radius of the circular motion and the tension in the spring .
A. $0.25 \mathrm{~m}, 0.1 \mathrm{~N}$
B. $0.5 \mathrm{~m}, 0.52 \mathrm{~N}$
C. 0.55 m 0.1 N
D. $0.9 \mathrm{~m}, 0.2 \mathrm{~N}$

Answer: C
(Watch Video Solution
16. A gramophone record of mass M and radius R is rotating at angular velocity ωA coin of mass is gently placed on the record at a distance $r=\frac{R}{2}$ from its centre. The new angular velocity of the system is

$$
\begin{aligned}
& \text { A. } \frac{2 \omega M}{(2 M+m)} \\
& \text { B. } \frac{2 \omega M}{(M+2 m)} \\
& \text { C. } \omega \\
& \text { D. } \frac{\omega M}{m}
\end{aligned}
$$

- Watch Video Solution

17. A block of mass $m=1 \mathrm{~kg}$ is placed over a
plank Q of mass $M=6 \mathrm{~kg}$, placed over a smooth horizontal surface as shown in figure. Block P is given a velocity $v=2 \mathrm{~m} / \mathrm{s}^{2}$ to the right. If the coefficient of friction between P and Q is $\mu=0.3$. Find the acceleration of Q

relative to P.

A. $4 m / s^{2}$
B. $3.5 \mathrm{~m} / \mathrm{s}^{2}$
C. $2 m / s^{2}$
D. $10.0 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution
18. A man runs at a speed of $4 m / s$ to overtake a standing bus. When he is 6 m beind the door at $t=0$, the bus mover forward and continuous with a constant acceleration of $1.2 m / s^{2}$. The man reaches the door in time t. Then

$$
\text { A. } 4 t=6+0.6 t^{2}
$$

B. $1.2 t^{2}=4 t$
C. $4 t^{2}=1.2 t$

$$
\text { D. } 6+4 t=0.2 t^{2}
$$

Answer: A

D Watch Video Solution

19. In completely inelastic collision

A. The complete KE of the medium must
lost
B. The linear momentum of the system
must remain conserved during collision

C. Both (the complete KE of the medium

must lost) and (the linear momentum of
the system must remain conserved
during collision) are correct
D. Both (the complete KE of the medium
must lost) and (the linear momentum of
the system must remain conserved
during collision) are incorrect

Answer: B

20. Number of particles is given by
$n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}}$ crossing a unit area perpendicular to X-axis in unit time, where n_{1} and n_{2} are number of particles per unit volume for the value of x meant to x_{2} and x_{1}.

Find dimensions of D called as diffusion constant
A. $\left[M^{0} L T^{0}\right]$
B. $\left[M^{0} L^{2} T^{-4}\right]$
C. $\left[M^{0} L T^{-3}\right]$

$$
\text { D. }\left[M^{0} L^{2} T^{-1}\right]
$$

Answer: D

D Watch Video Solution

21. In the given circuit (as shown in figure), each capacitor has a capacity of $3 \mu F$. What
will be the net charge on each capacitor ?

A. $48 \mu C$
B. $24 \mu C$
C. $12 \mu C$
D. None of these
22. A solid conductor is placed in an uniform electric field as shown in figure. Which path will the lines of force follow?

A.

B.
C.

D.

Answer: C

D Watch Video Solution

23. A bomb at rest explodes into three parts of
the same mass. The linear momentum of two
parts are $-2 p \hat{i}$ and $p \hat{j}$. The magnitude of momentum of third part is $p \sqrt{x}$. Find x .
A. P
B. $\sqrt{5} P$
C. 2 P

D. 10 p

Answer: B

D Watch Video Solution

24. A block is placed on an inclined plane. The block is moving towards right horizontal with an acceleration $a_{0}=g$. The length of the inclined plane (AC) is equal to 1 m . Whole the situation are shown in the figure. Assume that all the surfaces are frictionless. The time taken
by the block to reach from C to A is (Take,

$$
\left.g=10 m / s^{2}\right)
$$

A. 0.74 s
B. 0.9 s
C. 0.52 s
D. 1.24 s

- Watch Video Solution

25. Pseudo force is
A. Electromagnetic in nature
B. A nuclear force
C. A gravitational force
D. None of the above

- Watch Video Solution

26. A light in extensible string that goes over a smooth fixed pulley as shown in the figure connect two blocks of masses
0.36 kg and 0.72 kg . Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Find the work done by string on the block of mass
0.36 kg during the first second after the
system is released from rest.

A. 4 J
B. 2J
C. 8 J
D. 10J

Answer: C

D Watch Video Solution

27. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of capacitance and magnetic induction respectively . When are the dimensions of Y in MLTQ system ?
A. $\left[M^{-3} L^{-2} T^{-2} Q^{-4}\right]$
B. $\left[M L^{-2}\right]$
C. $\left[M^{-3} L^{-2} Q^{4} T^{8}\right]$

$$
\text { D. }\left[M^{-3} L^{-2} Q^{4} T^{4}\right]
$$

Answer: D

D Watch Video Solution

28. Infinite number of masses, each of 1 kg , are
placed along the x-axis at
$x= \pm 1 m, \pm 2 m, \pm 4 m, \pm 8 m, \pm 16 m .$.

The gravitational of the resultant gravitational potential in term of gravitaitonal constant G at the origin $(x=0)$ is
A. $\frac{G}{2}$
B. G
C. 2G
D. 4G

Answer: C

D Watch Video Solution

29. Three bulbs X, Y and Z are connected as shown in figure. The bulbs Y and Z are

A. Both X and Y will glow more brightly

B. Both X and Y will glow less brightly

C. X will glow less brightly and Y will glow more brightly
D. X will glow more brightly and Y will glow less brightly

Answer: C

D Watch Video Solution

30. Active state of $n-p-n$ transistor, in circuit is achieved by
A. Low input voltage
B. High input voltage
C. Both (low input voltage) and (high input
voltage)
D. Neither (low input voltage) nor (high
input voltage)

Answer: D

D Watch Video Solution

31. A turntable of radius $\mathrm{R}=10 \mathrm{~m}$ is rotation making 98 rev in 10 s with a boy of mass $\mathrm{m}=60$ kg standing at its centre. He starts running along a radius. Find the frequency of the turntable when the boy is 4 m from the centre.

The moment of inertia of the turntable about its axis $1000 \mathrm{~kg}-\mathrm{m}^{2}$.
A. 10 Hz
B. 2.5 Hz
C. 5 Hz

D. 4 Hz

Answer: C

D Watch Video Solution

32. To transmit a signal, if height of transmitting signal above surface of the earth
is H , this signal can be received on surface of
the earth upto distance from transmitter.

Then
A. $d \propto H$
B. $d \propto H^{2}$
C. $d \propto H^{\frac{1}{2}}$
D. $d \propto H^{\frac{3}{2}}$

Answer: C

- Watch Video Solution

33. The circuit is equivalent to

A. AND gate
B. OR gate
C. Not gate
D. None of these

Answer: B

D Watch Video Solution
34. Length of 20 cm (exact) long pipe is measured by two instruments and reported as
19.65 cm and 20.1 cm
A. 19.65 cm is more accurate
B. Both measurements are equally precise
C. Both measurements are equally accurate
D. 20.1 cm is less precise

Answer: D

D Watch Video Solution

35. An electric pump on the ground floor of a building takes 10 min to fill a tank of volume 2000 L with water. If the tank is 40 m above
the ground and the efficiency of the pump is
40%, how much electric power is consumed by
the pump in filling the tank?
Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. 2 kW
B. 3.33 kW
C. 4 kW
D. 6 kW

Answer: B
36. A vessel containing 1 mole of O_{2} gas (molar mass 32) at tempeature T. The pressure of the gas is P.An identical vessel containing onle mole of He gas (molar mass 4) at temperature

2 Thas a pressure of [2013]
A. $\frac{p}{8}$
B. p
C. $2 p$
D. $8 p$

Answer: C

D Watch Video Solution

37. The temperature of an ideal gas is increased from $\quad 27^{\circ} C \rightarrow 127^{\circ} C$, the percentage increase in $V_{r m s}$ is [2013]
A. 37%
B. 11%
C. 33%
D. 15.5%

Answer: D

D Watch Video Solution

38. A particle of mass $m=5 \mathrm{~g}$ is executing simple harmonic motion with an amplitude 0.3 m and time period $\frac{\pi}{2}$ sec. The maximum value of force acting on the particle is
A. 5 N
B. 4 N
C. 0.5 N

D. 0.15 N

Answer: D

D Watch Video Solution

39. A partition wall has two layers of different materials A and B in contact with each other.

They have the same thickness but the thermal conductivity of layer A is twice that of layer B.

At steady state the temperature difference
across the layer B is 50 K , then the corresponding difference across the layer A is
A. 50 k
B. 12.5 k
C. 25 k
D. 60 k

Answer: C
(Watch Video Solution
40. Pulse rate of a noumal person is 75 per minute. The time period of heart is
A. $0.8 s$
B. 0.75 s
C. 1.25 s
D. 1.75 s

Answer: A

D Watch Video Solution

