©゙’doubtnut

PHYSICS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2015

Physics

1. An artificial satellite is moving in a circular
orbit around the earth with a speed equal to
half the magnitude of the escape velocity from
the earth. The height (h) of the satellite above
the earth's surface is (Take radius of earth as
R_{e})
A. $h=R_{e}^{2}$
B. $h=R_{e}$
C. $h=2 R_{e}$
D. $h=4 R_{e}$

Answer: B

D Watch Video Solution
2. In figure, two blocks are separated by a uniform strut attached to each block with frictionless pins. Block A weighs 400 N , block B weighs 300 N , and the strut $A B$ weigh 200 N . If
$\mu=0.25$ under B, determine the minimum coefficient of friction under A to prevent motion.

A. 0.4
B. 0.2
C. 0.8
D. 0.1

Answer: A

D Watch Video Solution

3. Two tuning forks with natural frequencies of

340 Hz each move relative to a stationary observer. One fork moves away form the observer, while the other moves towards him
at the same speed. The observer hears beats of frequency $3 H z$. Find the speed of the tuning fork.
A. $1.5 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $1 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
4. The displacement of a particle is given at time t , by:
$x=A \sin (-2 \omega t)+B \sin ^{2} \omega t$ Then,
A. the motion of the particle is SHM with
an amplitude of $\sqrt{A^{2}+\frac{B^{2}}{4}}$
B. the motion of the particle is not SHM,
but oscillatory with a time period of

$$
T=\pi / \omega
$$

C. the motion of the particle is oscillatory
with a time period of $T=\pi / 2 \omega$

D. none

Answer: A

D Watch Video Solution

5. A ray parallel to principal axis is incident at
30° from normal on concave mirror having
radius of curvature R. The point on principal axis where rays are focussed is Q such that $P Q$

A. $\frac{R}{2}$
B. $\frac{R}{\sqrt{3}}$
C. $\frac{2 \sqrt{R}-R}{\sqrt{2}}$
c. $\frac{\sqrt{2}}{}$
D. $R\left(1-\frac{1}{\sqrt{3}}\right)$
6. A solid sphere of radius R has a charge Q distributed in its volume with a charge density
$\rho=k r^{a}$, where k and a are constants and r is
the distance from its centre. If the electric field
at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that $r=R$, find the value of a.
A. 3
B. 5
C. 2
D. 7

Answer: C

D Watch Video Solution

7. A charged particle is moving in a uniform magnetic field and losses 4% of its KE. The radius of curvature of its path change by
A. 2%
B. 4%
C. 10%
D. 12%

Answer: A

D Watch Video Solution

8. Calculate the wavelength of light used in an
interference experiment from the following
data: Fringe width $=0.03 \mathrm{~cm}$. Distance between slits and eyepiece through which the interference pattern is observed is 1 m .

Distance between the images of the virtural when a convex lens of focal length 16 cm is used at a distance of 80 cm from the eyepiece is 0.8 cm .
A. $0.0006 \AA$
B. 0.0006 m
C. 600 cm
D. $6000 \AA$

Answer: D

9. The masses of the block A and B are
m and M Between A and B there is a constant force F but B can slide frictionlessly
on the horizontal surface A is set in motion
with velocity v_{0} while B is at rest. What is the distance moved by A relative to B before they move with the same velocity

A. $\frac{m M v_{0}^{2}}{F(m-M)}$

$$
m M v_{0}^{2}
$$

B. $\frac{v_{0}}{2 F(m-M)}$
$m M v_{0}^{2}$
C. $\frac{0}{F(m+M)}$
D. $\frac{m M v_{0}^{2}}{2 F(M+m)}$

Answer: D

D Watch Video Solution

10. An elastic spring of unstretched length L and spring constant K is stretched by a small
length x. It is further stretched by another small length y. the work done in second stretcing is
A. $1 / 2 K y^{2}$
B. $1 / 2 K y(2 x+y)$
C. $1 / 2 K\left(x^{2}+y^{2}\right)$
D. $1 / 2 k(x+y)^{2}$

Answer: B

D Watch Video Solution
11. A body is thrown vertically upwards from A.

The top of a tower. It reaches the ground in
time t_{1}. It it is thrown vertically downwards
from A with the same speed it reaches the ground in time t_{2}, If it is allowed to fall freely from A. then the time it takes to reach the
ground.

A. $t=\frac{t_{1}+t_{2}}{2}$
B. $t=\frac{t_{1}-t_{2}}{2}$
C. $t=\sqrt{t_{1} t_{2}}$

$$
\text { D. } t=\sqrt{\frac{t_{1}}{t_{2}}}
$$

Answer: C

D Watch Video Solution

12. 0.5 mole of an ideal gas at constant temperature $27^{\circ} C$ kept inside a cylinder of length L and cross-section area A closed by a massless piston The cylinder is attached with a conducting rod of length L cross-section area
$(1 / 9) m^{2}$ and thermal conductivity k whose
other end is maintained at $0^{\circ} C$ If piston is moved such that rate of heat flow through the conducing rod is constant then find velocity of piston when it is at height $L / 2$ from the bottom of cylinder [Neglect any kind of heat loss from system

A. $\left(\frac{k}{R}\right) m / \sec$
B. $\left(\frac{k}{10 R}\right) m / \mathrm{sec}$
C. $\left(\frac{k}{100 R}\right) m / \sec$
D. $\left(\frac{k}{1000 R}\right) m / \mathrm{sec}$

Answer: C

- Watch Video Solution

13. A conducting square loop is placed in a magnetic field B with its plane perpendicular to the field. Now the sides of the loop start shrinking at a constant rate α. the induced
emf in the loop at an instant when its side is a
is
A. $2 a \alpha B$
B. $a^{2} \alpha B$
C. $2 a^{2} \alpha B$
D. $a \alpha B$

Answer: A
(Watch Video Solution
14. A beam of light has three
$\lambda, 4144 \AA, 4972 \AA$ and $6216 \AA$ with a total
intensity of $3.6 \times 10^{-3} W^{-2} \quad$ equally
distributed amongst the three λ. The beam
falls normally on an area $1.0 \mathrm{~cm}^{2}$ of a cleam metallic surface of work function 2.3 eV .

Assume that there is no loss of light by reflection etc. Calculate the no. of photoelectrons emitted in 2 sec , in scientific notation, $x \times 10^{y}$ find the value of y.

$$
\text { A. } 2 \times 10^{9}
$$

B. 1.075×10^{12}
C. 9×10^{8}
D. 3.75×10^{6}

Answer: B

D Watch Video Solution

15. A square gate of size $1 m \times 1 m$ is hinged at its mid point. A fluid of density ρ fill the space to the left of the gate. The force F required to
hold the gate stationary is
A. $\frac{\rho g}{3}$
B. $\frac{\rho g}{2}$
C. $\frac{\rho g}{6}$
D. $\frac{\rho g}{8}$

Answer: C

- Watch Video Solution

16. When $0.50 \AA$ X-ray strike a material , the photoelectron from the K shell are observed to move in a circle of radius 2.3 nm in a magnetic field of 2×10^{-2} tesle acting perpendicular to direct of emission of photoelectron. What is the binding elergy of k - shell electron?
A. 3.5 keV
B. 6.2 keV
C. 2.9 keV
D. 5.5 keV

Answer: B

D Watch Video Solution

17. In a CE transistor amplifier, the audio signal
voltage across the collector resistance of $2 k \Omega$
is $2 V$. If the base resistance is $1 k \Omega$ and the
current amplification of the transistor is 100, the input signal voltage is:
A. 2 mV
B. 3 mV
C. 10 mV
D. 0.1 mV

Answer: C
(Watch Video Solution
18. At the corners of an equilateral tringle of
side $a=1 \mathrm{~m}$, three point charge are placed
(each of 0.1 C). If this system is supplied energy
at the rate of 1 kW , then calculate the time required to move one of charges to the midpoint of the line joining the other two.

A. 50 h
B. 60 h
C. 48 h
D. 54 h

Answer: A

D Watch Video Solution

19. A vessel of volume $20 L$ contains a mixture
o hydrogen and helium at temperature of
$27^{\circ} \mathrm{C}$ and pressure 2.0 atm The mass of the mixture is $5 g$. Assuming the gases to be ideal,
the ratio of the mass of hydrogen to heat of helium in the given mixture will be
A. $1: 2$
B. $2: 3$
C. 2:1
D. $2: 5$

Answer: D
(Watch Video Solution
20. The resistance of a wire is R. It is bent at the middle by 180° and both the ends are twisted together to make a shorter wire. The resistance of the new wire is
A. 2 R
B. $R / 2$
C. $R / 4$
D. $R / 8$

Answer: C

21. In YDSE, light of wavelength $\lambda=5000 \AA$ is used, which emerges in phase from two slits distance $d=3 \times 10^{-7} \mathrm{~m}$ apart. A transparent sheet of thickness $t=1.5 \times 10^{-7} \mathrm{~m}$,
refractive index $n=1.17$, is placed over one of the slits. Where does the central maxima of
the interference now appear from the center
of the screen? (Find the value of y ?)

A. 4.9° and $\frac{D(\mu-1) t}{2 d}$
B. 4.9° and $\frac{D(\mu-1) t}{d}$
C. 3.9° and $\frac{D(\mu+1) t}{d}$
D. 2.9° and
$\frac{2 D(\mu+1) t}{d}$

Answer: B

D Watch Video Solution

22. The position of a projectile launched from
the origin at $\mathrm{t}=0$ is given by $s=(40 \hat{i}+50 \hat{j}) m$ at $t=2 s$. if the projectile was launched at an angle θ from the horizontal, then θ is (take $g=$ $10 m s^{-2}$
A. $\tan ^{-1} \frac{2}{3}$
B. $\tan ^{-1} \frac{3}{2}$
C. $\tan ^{-1} \frac{7}{4}$
D. $\tan ^{-1} \frac{4}{5}$

Answer: C

D Watch Video Solution

23. Water is flowing on a horizontal fixed surface, such that its flow velocity varies with y
(vertical direction) as $v=k\left(\frac{2 y^{2}}{a^{2}}-\frac{y^{3}}{a^{3}}\right)$. If
coefficient of viscosity for water is η, what will
be shear stress between layers of water at y
=a.
A. $\frac{\eta k}{a}$
B. $\frac{\eta}{k a}$
C. $\frac{\eta a}{k}$
D. None of these

Answer: A
(Watch Video Solution
24. A load of mass m falls from a height h on
to the scale pan hung from a spring, as shown
in the figure. If the spring constant is k, mass
of the not bounce, relative to the pan, then
the amplitude of vibration is

A. $m g / d$

$$
\begin{aligned}
& \text { B. } \frac{m g}{k} \sqrt{\left(\frac{1+2 h k}{m g}\right)} \\
& \text { C. } \frac{m g}{k}+\frac{m g}{k} \sqrt{\left(\frac{1+2 h k}{m g}\right)} \\
& \text { D. } \frac{m g}{k} \sqrt{\left(\frac{1+2 h k}{M g}-\frac{m g}{k}\right)}
\end{aligned}
$$

Answer: B

- Watch Video Solution

25. In an ore containing Uranium, the ratio of U^{238} to Pb^{206} nuceli is 3 . Calculate the age of the ore, assuming that alll the lead present in
the ore is the final stable, product of U^{238}. Take the half-like of U^{238} to be 4.5×10^{9} years.
$\ln (4 / 3)=0.288$.
A. $1.6 \times 19^{3} y r$
B. $1.5 \times 10^{4} y r$
C. $1.867 \times 10^{9} \mathrm{yr}$
D. $2 \times 10^{5} y r$

Answer: C

- Watch Video Solution

26. A direct current of $5 A$ is superimposed on
an alternating current $\mathrm{I}=10 \sin \omega t$ flowing
through a wire. The effective value of the resulting current will be
A. $(15 / 2) A$
B. $5 \sqrt{3} A$
C. $5 \sqrt{5} A$
D. 15 A

Answer: B

D Watch Video Solution
27. A plano-convex lens fits exactly into a plano-concave lens. Their plane surfaces are parallel to each other. If the lenses are made of different material of refractive indices μ_{1} and μ_{2} and R is the radius of curvature of the curved surface of the lenses, then focal length of the combination is
A. $\frac{R}{\mu_{1}-\mu_{2}}$
B. $\frac{2 R}{\mu_{1}-\mu_{2}}$
C. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
D. $\frac{R}{2-\left(\mu_{1}+\mu_{2}\right)}$

Answer: A

D Watch Video Solution

A thin rod of length 41 , mass 4 m is bent at the
point as shown in the figure. What is the moment of inertia of the rod about the axis
passing through O and perpendicular to the plane of the paper?

$$
\begin{aligned}
& \text { A. } \frac{M l^{2}}{3} \\
& \text { B. } \frac{10 M l^{2}}{3} \\
& \text { C. } \frac{M l^{2}}{12} \\
& \text { D. } \frac{M l^{2}}{24}
\end{aligned}
$$

Answer: B
29. One of the lines in the emission spectrum
of $L i^{2+}$ has the same wavelength as that of
the 2 nd line of Balmer series in hydrogen
spectrum. The electronic transition
corresponding to this line is $\mathrm{n}=12 \rightarrow \mathrm{n}=\mathrm{x}$.
Find the value of x .
A. 8
B. 6
C. 7
D. 5

Answer: B

D Watch Video Solution

30. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_{1} and R_{2}, respectively. The ratio of masses of X and Y is
A. $\left(R_{1} / R_{2}\right)^{1 / 2}$
B. $\left(R_{2} / R_{1}\right)$
C. $\left(R_{1} / R_{2}\right)^{2}$
D. $\left(R_{1} / R_{2}\right)$

Answer: C

D Watch Video Solution

31. A glass capillary tube of internal radius $r=0.25 \mathrm{~mm}$ is immersed in water. The top end of the tube projects by 2 cm above the
surface of water. At what angle does the liquid
meet the tube? Surface tension of water

$$
=0.7 N m^{-1}
$$

A. $\theta=90^{\circ}$
B. $\theta=70^{\circ}$
C. $\theta=45^{\circ}$
D. $\theta=35^{\circ}$

Answer: B
(Watch Video Solution
32. A particle of mass $2 m$ is projected at an angle of 45° with horizontal with a velocity of $20 \sqrt{2} m / s$. After $1 s$ explosion takes place and the particle is broken into two equal pieces. As a result of explosion one part comes to rest.

Find the maximum height attained by the other part. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 50 m
B. 25 m
C. 40 m

```
D. 35 m
```


Answer: D

D Watch Video Solution

33. A $2-m$ wide truck is moving with a uniform speed $v_{0}=8 m s^{-1}$ along a straight horizontal road. A pedestrian starts to cross
the road with a uniform speed v when the truck is $4 m$ away from him, The minimum
value of v so that he can cross the road safely is .
A. $2.62 \mathrm{~m} / \mathrm{s}$
B. $4.6 \mathrm{~m} / \mathrm{s}$
C. $3.57 \mathrm{~m} / \mathrm{s}$
D. $1.414 \mathrm{~m} / \mathrm{s}$

Answer: C
(Watch Video Solution
34. A neutron moving with a speed v makes a
head-on collision with a hydrogen in ground
state kept at rest which inelastic collision will be take place is (assume that mass of photon is nearly equal to the mass of neutron)
A. 10.2 eV
B. 20.4 eV
C. 12.1 eV
D. 16.8 eV

Answer: B

- Watch Video Solution

35. Vertical displacement of a plank with a body of mass ' m ' on it is varying according to law $y=\sin \omega t+\sqrt{3} \cos \omega t$. The minimum value of ω for which the mass just breaks off the plank and the moment it occurs first after
$t=0$
are
given
by:
(yis positive vertically upwards)
A. $\sqrt{g / 2}, \frac{\sqrt{2}}{6} \frac{\pi}{\sqrt{g}}$
B. $\frac{g}{\sqrt{2}}, \frac{2}{3} \sqrt{\pi / g}$
C. $\sqrt{g / 2}, \frac{\pi}{3} \sqrt{2 / g}$
D. $\sqrt{2 g}, \sqrt{2 \pi / 3 g}$

Answer: A

D Watch Video Solution

36. A parallel plate capacitor of capacitance C
is connected to a battery and is charged to a potential difference V. Another capacitor of capacitance 2 C is ismilarly charged to a potential difference 2 V . The charging battery is
now disconnected and the capacitors are connected in parallel to each other in such a way that the poistive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is
A. Zero
B. $\frac{3}{2} C V^{2}$
C. $\frac{25}{6} C V^{2}$
D. $\frac{9}{2} C V^{2}$

Answer: B
37. In the circuit below, the $A C$ source the voltage $\quad V=20 \cos (\omega t) \quad$ volts with
$\omega=2000 \mathrm{rad} / \mathrm{sec}$. The amplitude of the current will be nearest to

A. 2 A
B. 3.3 A
C. $2 / \sqrt{5} A$
D. $\sqrt{5} A$

Answer: A

- Watch Video Solution

38. A constant voltage is applied between the two ends of a uniform metallic wire. Some heat is developed in it. The heat developed is doubled if
A. both the length and the radius of the wire are halved.
B. both the length and the radius of the wire are doubled.
C. the radius of the wire is doubled.
D. the length of the wire is doubled.

Answer: B

D Watch Video Solution

39. the frequency of a sonometer wire is 10 Hz .

When the weight producing th tensions are completely immersed in water the frequency becomes 80 Hz and on immersing the weight in a certain liquid the frequency becomes 60 Hz . The specific gravity of the liquid is
A. 1.42
B. 1.77
C. 1.82
D. 1.21

Answer: B

- Watch Video Solution

40. A long straight wire along the z -axis carries
a current I in the negative z-direction. The magnetic vector field \vec{B} at a point having coordinates (x, y) in the $z=0$ plane is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I(y \hat{i}-x \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)} \\
& \text { B. } \frac{\mu_{0} I(x \hat{i}+y \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{\mu_{0} I(x \hat{j}-y \hat{i})}{2 \pi\left(x^{2}+y^{2}\right)} \\
& \text { D. } \frac{\mu_{0} I(x \hat{i}-y \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Answer: A

- Watch Video Solution

